Skip to main content
Glama

WisdomForge

A powerful knowledge management system that forges wisdom from experiences, insights, and best practices. Built with Qdrant vector database for efficient knowledge storage and retrieval.

Features

  • Intelligent knowledge management and retrieval

  • Support for multiple knowledge types (best practices, lessons learned, insights, experiences)

  • Configurable database selection via environment variables

  • Uses Qdrant's built-in FastEmbed for efficient embedding generation

  • Domain knowledge storage and retrieval

  • Deployable to Smithery.ai platform

Related MCP server: Memory MCP Server

Prerequisites

  • Node.js 20.x or later (LTS recommended)

  • npm 10.x or later

  • Qdrant or Chroma vector database

Installation

  1. Clone the repository:

git clone https://github.com/hadv/wisdomforge cd wisdomforge
  1. Install dependencies:

npm install
  1. Create a .env file in the root directory based on the .env.example template:

cp .env.example .env
  1. Configure your environment variables in the .env file:

Required Environment Variables

Database Configuration

  • DATABASE_TYPE: Choose your vector database (qdrant or chroma)

  • COLLECTION_NAME: Name of your vector collection

  • QDRANT_URL: URL of your Qdrant instance (required if using Qdrant)

  • QDRANT_API_KEY: API key for Qdrant (required if using Qdrant)

  • CHROMA_URL: URL of your Chroma instance (required if using Chroma)

Server Configuration

  • HTTP_SERVER: Set to true to enable HTTP server mode

  • PORT: Port number for local development only (default: 3000). Not used in Smithery cloud deployment.

Example .env configuration for Qdrant:

DATABASE_TYPE=qdrant COLLECTION_NAME=wisdom_collection QDRANT_URL=https://your-qdrant-instance.example.com:6333 QDRANT_API_KEY=your_api_key HTTP_SERVER=true PORT=3000 # Only needed for local development
  1. Build the project:

npm run build

AI IDE Integration

Cursor AI IDE

Add this configuration to your ~/.cursor/mcp.json or .cursor/mcp.json file:

{ "mcpServers": { "wisdomforge": { "command": "/bin/zsh", "args": [ "/path/to/wisdomforge/run-wisdomforge-mcp.sh" ] } } }

Replace the following placeholders in the configuration:

  • YOUR_API_KEY: Your Smithery API key

  • YOUR_COLLECTION_NAME: Your Qdrant collection name

  • YOUR_QDRANT_URL: Your Qdrant instance URL

  • YOUR_QDRANT_API_KEY: Your Qdrant API key

Note: Make sure you have Node.js installed and npx available in your PATH. If you're using nvm, ensure you're using the correct Node.js version by running nvm use --lts before starting Cursor.

Claude Desktop

Add this configuration in Claude's settings:

{ "processes": { "knowledge_server": { "command": "/path/to/your/project/run-mcp.sh", "args": [] } }, "tools": [ { "name": "store_knowledge", "description": "Store domain-specific knowledge in a vector database", "provider": "process", "process": "knowledge_server" }, { "name": "retrieve_knowledge_context", "description": "Retrieve relevant domain knowledge from a vector database", "provider": "process", "process": "knowledge_server" } ] }
-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/hadv/wisdomforge'

If you have feedback or need assistance with the MCP directory API, please join our Discord server