Skip to main content
Glama
financial-datasets

Financial Datasets MCP Server

Official

get_historical_crypto_prices

Retrieve historical cryptocurrency price data by specifying ticker, date range, and interval for analysis and tracking.

Instructions

Gets historical prices for a crypto currency.

Args: ticker: Ticker symbol of the crypto currency (e.g. BTC-USD). The list of available crypto tickers can be retrieved via the get_available_crypto_tickers tool. start_date: Start date of the price data (e.g. 2020-01-01) end_date: End date of the price data (e.g. 2020-12-31) interval: Interval of the price data (e.g. minute, hour, day, week, month) interval_multiplier: Multiplier of the interval (e.g. 1, 2, 3)

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
tickerYes
start_dateYes
end_dateYes
intervalNoday
interval_multiplierNo

Implementation Reference

  • The main handler function for the 'get_historical_crypto_prices' tool. It is decorated with @mcp.tool() which handles both registration and schema inference from the signature and docstring. The function constructs an API URL, calls the make_request helper to fetch data from Financial Datasets API, extracts the prices, and returns them as JSON string.
    @mcp.tool() async def get_historical_crypto_prices( ticker: str, start_date: str, end_date: str, interval: str = "day", interval_multiplier: int = 1, ) -> str: """Gets historical prices for a crypto currency. Args: ticker: Ticker symbol of the crypto currency (e.g. BTC-USD). The list of available crypto tickers can be retrieved via the get_available_crypto_tickers tool. start_date: Start date of the price data (e.g. 2020-01-01) end_date: End date of the price data (e.g. 2020-12-31) interval: Interval of the price data (e.g. minute, hour, day, week, month) interval_multiplier: Multiplier of the interval (e.g. 1, 2, 3) """ # Fetch data from the API url = f"{FINANCIAL_DATASETS_API_BASE}/crypto/prices/?ticker={ticker}&interval={interval}&interval_multiplier={interval_multiplier}&start_date={start_date}&end_date={end_date}" data = await make_request(url) # Check if data is found if not data: return "Unable to fetch prices or no prices found." # Extract the prices prices = data.get("prices", []) # Check if prices are found if not prices: return "Unable to fetch prices or no prices found." # Stringify the prices return json.dumps(prices, indent=2)
  • Helper function used by the tool (and others) to make authenticated HTTP requests to the Financial Datasets API, handling API key from env and errors.
    async def make_request(url: str) -> dict[str, any] | None: """Make a request to the Financial Datasets API with proper error handling.""" # Load environment variables from .env file load_dotenv() headers = {} if api_key := os.environ.get("FINANCIAL_DATASETS_API_KEY"): headers["X-API-KEY"] = api_key async with httpx.AsyncClient() as client: try: response = await client.get(url, headers=headers, timeout=30.0) response.raise_for_status() return response.json() except Exception as e: return {"Error": str(e)}
  • server.py:275-275 (registration)
    The @mcp.tool() decorator registers the function as an MCP tool, inferring schema from args and docstring.
    @mcp.tool()

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/financial-datasets/mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server