Skip to main content
Glama
GPTTRACE_FEATURES_INTEGRATION.md7.32 kB
# GPTtrace Features Integration Plan for MCPtrace ## Overview This document outlines specific features from GPTtrace that should be integrated into MCPtrace to enhance its capabilities while maintaining MCP protocol compliance. ## Priority 1: Essential Features (Immediate Implementation) ### 1. Example Database with Semantic Search **GPTtrace Implementation**: ```python # From gpttrace/examples.py loader = JSONLoader(file_path='./tools/examples.json', ...) embeddings = OpenAIEmbeddings() db = FAISS.from_documents(documents, embeddings) results = db.search(query, search_type='similarity') ``` **MCPtrace Implementation Plan**: ```rust // New tool: search_examples #[tool(description = "Search for relevant bpftrace examples using semantic similarity")] async fn search_examples( &self, Parameters(SearchRequest { query, limit }): Parameters<SearchRequest>, ) -> Result<CallToolResult> { // Load examples from JSON (same format as GPTtrace) // Return top N similar examples with their programs // Include metadata: use case, complexity, kernel version } ``` **Benefits**: - AI can find relevant examples without exact keyword matching - Reduces need for AI to generate programs from scratch - Improves accuracy by providing tested examples ### 2. Program Validation and Safety Checks **GPTtrace Feature**: ```python # Interactive confirmation before execution user_input = input("Enter 'y' to proceed: ") if user_input.lower() != 'y': print("Aborting...") exit() ``` **MCPtrace Implementation**: ```rust #[tool(description = "Validate a bpftrace program for syntax and safety")] async fn validate_program( &self, Parameters(ValidateRequest { program, safety_level }): Parameters<ValidateRequest>, ) -> Result<CallToolResult> { // Check syntax with bpftrace -d // Verify probe availability // Check for unsafe operations // Return validation report with warnings } ``` ### 3. Execution with Retry Logic **GPTtrace Feature**: ```python def execute(user_input, verbose=False, retry=5, previous_prompt=None, output=None): if retry == 0: print("Retry times exceeded...") # Retry with error feedback ``` **MCPtrace Enhancement**: ```rust #[tool(description = "Execute program with automatic retry on failure")] async fn exec_with_retry( &self, Parameters(RetryRequest { program, max_retries, timeout, fix_errors }): Parameters<RetryRequest>, ) -> Result<CallToolResult> { // Execute program // On syntax error, return error details for AI to fix // Track retry attempts and modifications } ``` ## Priority 2: Enhanced Functionality (Week 2-3) ### 4. Result Analysis and Summarization **GPTtrace Feature**: ```python def construct_prompt_for_explain(text: str, output: str) -> str: return f""" please explain the output of the previous bpftrace result: {output} The original user request is: {text} """ ``` **MCPtrace Tool**: ```rust #[tool(description = "Analyze trace output and provide structured summary")] async fn analyze_output( &self, Parameters(AnalyzeRequest { execution_id, output_type, // histogram, counter, trace, etc. focus_areas // specific metrics to highlight }): Parameters<AnalyzeRequest>, ) -> Result<CallToolResult> { // Parse output based on type // Extract key metrics // Identify anomalies or patterns // Return structured analysis } ``` ### 5. Template-Based Program Generation **New Feature** (inspired by GPTtrace's examples): ```rust #[tool(description = "Generate bpftrace program from template")] async fn generate_from_template( &self, Parameters(TemplateRequest { template_name, // e.g., "syscall_counter", "latency_histogram" parameters // template-specific params }): Parameters<TemplateRequest>, ) -> Result<CallToolResult> { // Load template // Substitute parameters // Validate generated program // Return ready-to-run program } ``` ### 6. Probe Discovery Assistant **Enhancement** beyond GPTtrace: ```rust #[tool(description = "Discover relevant probes for a tracing goal")] async fn discover_probes( &self, Parameters(DiscoverRequest { goal, // what user wants to trace probe_types // kprobe, uprobe, tracepoint, etc. }): Parameters<DiscoverRequest>, ) -> Result<CallToolResult> { // List relevant probes // Group by subsystem // Include probe descriptions // Suggest probe combinations } ``` ## Priority 3: Advanced Features (Month 2) ### 7. Multi-Tool Execution Support **GPTtrace Feature**: ```python # Support for bcc tools def cmd(cmd_name: str, query: str, verbose: bool): # Execute pre-built bcc tools ``` **MCPtrace Enhancement**: ```rust #[tool(description = "Execute bcc tool for common tracing tasks")] async fn exec_bcc_tool( &self, Parameters(BccRequest { tool_name, // execsnoop, opensnoop, etc. arguments, timeout }): Parameters<BccRequest>, ) -> Result<CallToolResult> { // Map to appropriate bcc tool // Execute with proper arguments // Return structured output } ``` ### 8. Execution History and Learning **New Feature**: ```rust #[tool(description = "Search execution history for similar traces")] async fn search_history( &self, Parameters(HistoryRequest { query, include_failed, time_range }): Parameters<HistoryRequest>, ) -> Result<CallToolResult> { // Search past executions // Include programs, results, and corrections // Learn from successful patterns } ``` ## Implementation Strategy ### Phase 1: Foundation (Week 1) 1. Add examples.json from GPTtrace 2. Implement search_examples tool 3. Add validate_program tool 4. Update exec_program with basic retry ### Phase 2: Intelligence (Week 2) 1. Implement analyze_output tool 2. Add template system 3. Create probe discovery tool 4. Enhance error messages with suggestions ### Phase 3: Integration (Week 3) 1. Add bcc tool support 2. Implement execution history 3. Create combined workflows 4. Add performance profiling ### Phase 4: Polish (Week 4) 1. Optimize example search 2. Add caching for common queries 3. Improve error recovery 4. Create comprehensive tests ## Migration Guide for GPTtrace Users ### For Users 1. Install MCPtrace server 2. Configure Claude Desktop/Code 3. Use natural language as before 4. Get enhanced features through MCP ### For Developers 1. Examples format remains compatible 2. Add new examples to shared database 3. Use MCP tools instead of direct API calls 4. Contribute templates and patterns ## Success Metrics 1. **Feature Parity**: All GPTtrace capabilities available 2. **Performance**: Faster execution with async model 3. **Reliability**: 90%+ success rate on first attempt 4. **Usability**: Reduced prompt engineering needed 5. **Safety**: No unsafe executions without explicit override ## Conclusion By integrating these GPTtrace features, MCPtrace will combine the best of both worlds: - GPTtrace's AI-native design and user experience - MCPtrace's robust architecture and standard protocol This creates a powerful, safe, and user-friendly kernel tracing solution that works seamlessly with modern AI assistants.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/eunomia-bpf/MCPtrace'

If you have feedback or need assistance with the MCP directory API, please join our Discord server