Skip to main content
Glama

Turf-MCP

by es3154

misc_shortest_path

Calculate the shortest path between two geographic points while accounting for obstacles and terrain, returning the optimal route as a GeoJSON LineString.

Instructions

计算两点之间的最短路径。

此功能计算两个地理点之间的最短路径,考虑障碍物和地形因素,返回最优路径线段。

Args: start_point: 起点 GeoJSON Point 特征或几何图形 - 类型: str (JSON 字符串格式的 GeoJSON) - 格式: 必须符合 GeoJSON Point 规范 - 坐标系: WGS84 (经度在前,纬度在后) - 示例: '{"type": "Point", "coordinates": [-122, 48]}'

end_point: 终点 GeoJSON Point 特征或几何图形 - 类型: str (JSON 字符串格式的 GeoJSON) - 格式: 必须符合 GeoJSON Point 规范 - 坐标系: WGS84 (经度在前,纬度在后) - 示例: '{"type": "Point", "coordinates": [-77, 39]}' options: 可选参数配置 - 类型: str (JSON 字符串) 或 None - 可选字段: - obstacles: 障碍物 GeoJSON 特征集合 - resolution: 路径计算分辨率 - properties: 传递给路径的属性对象 - 示例: '{"resolution": 100}'

Returns: str: JSON 字符串格式的 GeoJSON LineString 特征 - 类型: GeoJSON Feature with LineString geometry - 格式: {"type": "Feature", "geometry": {"type": "LineString", "coordinates": [...]}}

Raises: Exception: 当 JavaScript 执行失败、超时或输入数据格式错误时抛出异常

Example: >>> import asyncio >>> start = '{"type": "Point", "coordinates": [-122, 48]}' >>> end = '{"type": "Point", "coordinates": [-77, 39]}' >>> options = '{"resolution": 100}' >>> result = asyncio.run(shortest_path(start, end, options)) >>> print(result) '{"type": "Feature", "geometry": {"type": "LineString", "coordinates": [[-122, 48], ...]]}}'

Notes: - 输入参数 start_point 和 end_point 必须是有效的 JSON 字符串 - 坐标顺序为 [经度, 纬度] (WGS84 坐标系) - 计算两点之间的最短路径,考虑地理因素 - 依赖于 Turf.js 库和 Node.js 环境

Input Schema

NameRequiredDescriptionDefault
end_pointYes
optionsNo
start_pointYes

Input Schema (JSON Schema)

{ "properties": { "end_point": { "type": "string" }, "options": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null }, "start_point": { "type": "string" } }, "required": [ "start_point", "end_point" ], "type": "object" }

Other Tools from Turf-MCP

Related Tools

    MCP directory API

    We provide all the information about MCP servers via our MCP API.

    curl -X GET 'https://glama.ai/api/mcp/v1/servers/es3154/turf-mcp'

    If you have feedback or need assistance with the MCP directory API, please join our Discord server