Skip to main content
Glama

Turf-MCP

by es3154

aggregation_clustersDbscan

Group geographic points into clusters using DBSCAN density-based algorithm to identify spatial patterns and outliers in location data.

Instructions

使用 DBSCAN 算法进行点聚类。

此功能使用基于密度的空间聚类算法 (DBSCAN) 对点进行聚类,识别密集区域。

Args: points: 点特征集合 - 类型: str (JSON 字符串格式的 GeoJSON FeatureCollection) - 格式: FeatureCollection with Point features - 示例: '{"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Point", "coordinates": [-75.343, 39.984]}}, ...]}'

max_distance: 最大距离 - 类型: float - 描述: 聚类搜索的最大距离(单位:千米) - 示例: 100.0 options: 可选参数配置 - 类型: str (JSON 字符串) 或 None - 可选字段: - units: 距离单位 (默认: 'kilometers') - 有效值: 'miles', 'nauticalmiles', 'kilometers', 'meters', 'yards', 'feet', 'inches' - minPoints: 形成聚类所需的最小点数 (默认: 3) - 示例: '{"units": "miles", "minPoints": 5}'

Returns: str: JSON 字符串格式的 GeoJSON FeatureCollection - 类型: GeoJSON FeatureCollection with Point features - 格式: {"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Point", "coordinates": [lng, lat]}, "properties": {"cluster": 聚类编号, ...}}, ...]} - 示例: '{"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Point", "coordinates": [-75.343, 39.984]}, "properties": {"cluster": 1}}, ...]}'

Raises: Exception: 当 JavaScript 执行失败、超时或输入数据格式错误时抛出异常

Example: >>> import asyncio >>> points = '{"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Point", "coordinates": [-75.343, 39.984]}}]}' >>> result = asyncio.run(clustersDbscan(points, 100.0, '{"minPoints": 3}')) >>> print(result) '{"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Point", "coordinates": [-75.343, 39.984]}, "properties": {"cluster": 1}}, ...]}'

Notes: - 输入参数 points 和 options 必须是有效的 JSON 字符串 - 坐标顺序为 [经度, 纬度] (WGS84 坐标系) - DBSCAN 算法能够识别任意形状的聚类,并处理噪声点 - 聚类编号从 0 开始,-1 表示噪声点(不属于任何聚类) - 依赖于 Turf.js 库和 Node.js 环境

Input Schema

NameRequiredDescriptionDefault
max_distanceYes
optionsNo
pointsYes

Input Schema (JSON Schema)

{ "properties": { "max_distance": { "type": "number" }, "options": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null }, "points": { "type": "string" } }, "required": [ "points", "max_distance" ], "type": "object" }

Other Tools from Turf-MCP

Related Tools

    MCP directory API

    We provide all the information about MCP servers via our MCP API.

    curl -X GET 'https://glama.ai/api/mcp/v1/servers/es3154/turf-mcp'

    If you have feedback or need assistance with the MCP directory API, please join our Discord server