interpolation_interpolate
Estimate values across a grid using inverse distance weighting interpolation based on known point data values and locations.
Instructions
使用反距离权重法进行空间插值。
此功能根据已知点的属性值,使用反距离权重法在网格上估计属性值。
Args: points: 已知点的特征集合 - 类型: str (JSON 字符串格式的 GeoJSON FeatureCollection) - 格式: FeatureCollection with Point features - 示例: '{"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Point", "coordinates": [-75.343, 39.984], "properties": {"elevation": 100}}, ...]}'
Returns: str: JSON 字符串格式的 GeoJSON FeatureCollection - 类型: GeoJSON FeatureCollection with Point or Polygon features - 格式: {"type": "FeatureCollection", "features": [...]} - 示例: '{"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Point", "coordinates": [-75.343, 39.984], "properties": {"temperature": 25.5}}, ...]}'
Raises: Exception: 当 JavaScript 执行失败、超时或输入数据格式错误时抛出异常
Example: >>> import asyncio >>> points = '{"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Point", "coordinates": [-75.343, 39.984], "properties": {"temperature": 25.5}}]}' >>> result = asyncio.run(interpolate(points, 100.0, '{"gridType": "point", "property": "temperature"}')) >>> print(result) '{"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Point", "coordinates": [-75.343, 39.984], "properties": {"temperature": 25.5}}, ...]}'
Notes: - 输入参数 points 和 options 必须是有效的 JSON 字符串 - 坐标顺序为 [经度, 纬度] (WGS84 坐标系) - 反距离权重法假设距离越近的点对插值结果影响越大 - 依赖于 Turf.js 库和 Node.js 环境
Input Schema
| Name | Required | Description | Default |
|---|---|---|---|
| cell_size | Yes | ||
| options | No | ||
| points | Yes |