Skip to main content
Glama
chrishayuk

Physics MCP Server

by chrishayuk

fit_trajectory

Fit polynomial equations to trajectory data for smoothing noisy measurements or deriving motion equations, supporting linear, quadratic, or cubic fits to model constant acceleration or other motion patterns.

Instructions

Fit polynomial to trajectory data.

Useful for smoothing noisy data or finding trajectory equations. Default fit_type="quadratic" fits parabolic trajectory (constant acceleration). Args: times: Time values in seconds (or JSON string) positions: Position vectors [[x,y,z], ...] in meters (or JSON string) fit_type: Polynomial type - "linear", "quadratic", or "cubic" (default "quadratic") Returns: Dict containing: - coefficients_x: Polynomial coefficients for x(t) - coefficients_y: Polynomial coefficients for y(t) - coefficients_z: Polynomial coefficients for z(t) - r_squared: R² goodness of fit (0-1) - predicted_positions: Fitted positions [[x,y,z], ...] Example - Projectile motion: result = await fit_trajectory( times=[0, 1, 2, 3], positions=[[0,0,0], [10,15,0], [20,20,0], [30,15,0]], fit_type="quadratic" ) # Fits x(t) = c0 + c1*t + c2*t²

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
timesYes
positionsYes
fit_typeNoquadratic

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/chrishayuk/chuk-mcp-physics'

If you have feedback or need assistance with the MCP directory API, please join our Discord server