calculate_escape_velocity
Calculate the minimum speed required for an object to escape a celestial body's gravitational pull using mass, radius, and gravitational constant inputs.
Instructions
Calculate escape velocity: v_escape = √(2GM/r).
Minimum speed needed to escape a celestial body's gravitational pull.
Independent of the escaping object's mass.
Args:
mass: Mass of celestial body in kg
radius: Radius of celestial body in meters
gravitational_constant: G in m³/(kg⋅s²) (default 6.674e-11)
Returns:
Dict containing:
- escape_velocity: v_escape in m/s
- escape_velocity_kmh: v_escape in km/h (for convenience)
Tips for LLMs:
- Earth: v_escape ≈ 11,200 m/s (40,320 km/h)
- Moon: v_escape ≈ 2,380 m/s
- Sun: v_escape ≈ 617,500 m/s
- Independent of escape direction or mass of escaping object
Example - Earth escape velocity:
result = await calculate_escape_velocity(
mass=5.972e24, # Earth mass (kg)
radius=6.371e6 # Earth radius (meters)
)
# v_escape ≈ 11,186 m/s
Input Schema
TableJSON Schema
| Name | Required | Description | Default |
|---|---|---|---|
| mass | Yes | ||
| radius | Yes | ||
| gravitational_constant | No |