README.md•2.68 kB
# MCP Read Images
An MCP server for analyzing images using OpenRouter vision models. This server provides a simple interface to analyze images using various vision models like Claude-3.5-sonnet and Claude-3-opus through the OpenRouter API.
## Installation
```bash
npm install @catalystneuro/mcp_read_images
```
## Configuration
The server requires an OpenRouter API key. You can get one from [OpenRouter](https://openrouter.ai/keys).
Add the server to your MCP settings file (usually located at `~/Library/Application Support/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json` for VSCode):
```json
{
"mcpServers": {
"read_images": {
"command": "read_images",
"env": {
"OPENROUTER_API_KEY": "your-api-key-here",
"OPENROUTER_MODEL": "anthropic/claude-3.5-sonnet" // optional, defaults to claude-3.5-sonnet
},
"disabled": false,
"autoApprove": []
}
}
}
```
## Usage
The server provides a single tool `analyze_image` that can be used to analyze images:
```typescript
// Basic usage with default model
use_mcp_tool({
server_name: "read_images",
tool_name: "analyze_image",
arguments: {
image_path: "/path/to/image.jpg",
question: "What do you see in this image?" // optional
}
});
// Using a specific model for this call
use_mcp_tool({
server_name: "read_images",
tool_name: "analyze_image",
arguments: {
image_path: "/path/to/image.jpg",
question: "What do you see in this image?",
model: "anthropic/claude-3-opus-20240229" // overrides default and settings
}
});
```
### Model Selection
The model is selected in the following order of precedence:
1. Model specified in the tool call (`model` argument)
2. Model specified in MCP settings (`OPENROUTER_MODEL` environment variable)
3. Default model (anthropic/claude-3.5-sonnet)
### Supported Models
The following OpenRouter models have been tested:
- anthropic/claude-3.5-sonnet
- anthropic/claude-3-opus-20240229
## Features
- Automatic image resizing and optimization
- Configurable model selection
- Support for custom questions about images
- Detailed error messages
- Automatic JPEG conversion and quality optimization
## Error Handling
The server handles various error cases:
- Invalid image paths
- Missing API keys
- Network errors
- Invalid model selections
- Image processing errors
Each error will return a descriptive message to help diagnose the issue.
## Development
To build from source:
```bash
git clone https://github.com/catalystneuro/mcp_read_images.git
cd mcp_read_images
npm install
npm run build
```
## License
MIT License. See [LICENSE](LICENSE) for details.