Skip to main content
Glama

describe_collection

Retrieve the schema and metadata of a specified collection to understand its structure and properties. Use this tool to manage and analyze collections in Typesense MCP Server efficiently.

Instructions

Retrieves the schema and metadata for a specific collection. Args: ctx (Context): The MCP context. collection_name (str): The name of the collection to describe. Returns: dict | str: The collection schema dictionary or an error message string.

Input Schema

NameRequiredDescriptionDefault
collection_nameYes

Input Schema (JSON Schema)

{ "properties": { "collection_name": { "title": "Collection Name", "type": "string" } }, "required": [ "collection_name" ], "title": "describe_collectionArguments", "type": "object" }

Implementation Reference

  • main.py:142-167 (handler)
    This is the handler function for the 'describe_collection' tool. It is decorated with @mcp.tool() for registration and implements the logic to retrieve the schema and metadata of a Typesense collection by name, handling various errors.
    @mcp.tool() async def describe_collection(ctx: Context, collection_name: str) -> dict | str: """ Retrieves the schema and metadata for a specific collection. Args: ctx (Context): The MCP context. collection_name (str): The name of the collection to describe. Returns: dict | str: The collection schema dictionary or an error message string. """ if not collection_name: return "Error: collection_name parameter is required." try: client: typesense.Client = ctx.request_context.lifespan_context.client collection_info = client.collections[collection_name].retrieve() return collection_info except typesense.exceptions.ObjectNotFound: return f"Error: Collection '{collection_name}' not found." except typesense.exceptions.TypesenseClientError as e: print(f"Error describing collection '{collection_name}': {e}") return f"Error describing collection '{collection_name}': {e}" except Exception as e: print(f"An unexpected error occurred while describing collection '{collection_name}': {e}") return f"An unexpected error occurred: {e}"

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/avarant/typesense-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server