Skip to main content
Glama

FastMCP_RecSys

by attarmau

FastMCP_RecSys

这是一个基于 CLIP 且带有 MCP 的时尚推荐器。

小样

用户上传服装图片 → YOLO 检测服装 → CLIP 编码 → 推荐类似服装

文件夹结构

/project-root │ ├── /backend │ ├── Dockerfile │ ├── /app │ │ ├── server.py # FastAPI app code │ │ ├── /routes │ │ │ └── clothing_routes.py │ │ ├── /controllers │ │ │ └── clothing_controller.py │ │ │ └──clothing_tagging.py │ │ │ └── tag_extractor.py # Pending: define core CLIP functionality │ │ ├── schemas/ │ │ │ └── clothing_schemas.py │ │ ├── config/ │ │ │ └── tag_list_en.py $ Tool for mapping: https://jsoncrack.com/editor │ │ │ └── database.py │ │ │ └── settings.py │ │ │ └── api_keys.py │ │ └── requirements.txt │ └── .env │ ├── /fastmcp │ └── app │ └── server.py │ ├── /frontend │ ├── Dockerfile │ ├── package.json │ ├── package-lock.json │ ├── /public │ │ └── index.html │ ├── /src │ │ ├── /components │ │ │ ├── ImageUpload.jsx │ │ │ ├── DetectedTags.jsx │ │ │ └── Recommendations.jsx │ │ ├── /utils │ │ │ └── api.js │ │ ├── App.js # Main React component │ │ ├── index.js │ │ ├── index.css │ │ ├── tailwind.config.js │ │ ├── postcss.config.js │ │ └── .env │ ├── .gitignore │ ├── docker-compose.yml │ └── README.md └────── requirements.txt

快速入门指南

步骤 1:克隆 GitHub 项目

第 2 步:设置 Python 环境

python -m venv venv source venv/bin/activate # On macOS or Linux venv\Scripts\activate # On Windows

步骤3:安装依赖项

pip install -r requirements.txt

步骤 4:启动 FastAPI 服务器(后端)

uvicorn backend.app.server:app --reload

一旦服务器运行并且数据库连接,您应该在控制台中看到以下消息:

Database connected INFO: Application startup complete.

步骤5:安装依赖项

数据库连接信息:应用程序启动完成。

npm install

步骤 6:启动开发服务器(前端)

npm start

一旦运行,服务器就会记录确认并在浏览器中打开应用程序: http://localhost:3000/

📌 UI 示例组件

  1. 图片上传
  2. 提交按钮
  3. 显示服装标签+推荐

目前已完成的工作:

  1. FastAPI 服务器已启动并运行(4 月 24 日)
  2. 数据库连接已建立(4 月 24 日)
  3. 后端架构已正常运行(4 月 24 日)
  4. 上传图片的基本前端 UI(4 月 25 日)

下一步:

  1. 评估 CLIP 对样本服装图像的标记准确率
  2. 微调标记系统以获得更好的推荐
  3. 使用实时用户数据测试后端集成
  4. 设置模型性能监控
  5. 前端演示
-
security - not tested
A
license - permissive license
-
quality - not tested

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

基于 CLIP 的时尚推荐系统,允许用户上传服装图像并根据视觉分析接收标签和推荐。

  1. 小样
    1. 文件夹结构
      1. 快速入门指南
    2. 目前已完成的工作:

      Related MCP Servers

      • -
        security
        -
        license
        -
        quality
        An MCP server that integrates FindMine's product styling and outfit recommendation capabilities with Claude and other MCP-compatible applications, allowing users to browse products, get outfit recommendations, find similar items, and access style guidance.
        Last updated -
        7
        1
        JavaScript
      • -
        security
        -
        license
        -
        quality
        A Model Context Protocol server that integrates with the Ravelry API, allowing AI assistants to search for and retrieve knitting and crochet patterns.
        Last updated -
        MIT License
      • -
        security
        A
        license
        -
        quality
        A CLIP-Based Fashion Recommender system with MCP that provides fashion recommendations based on uploaded images.
        Last updated -
        Python
        Apache 2.0
        • Linux
        • Apple
      • -
        security
        A
        license
        -
        quality
        A TypeScript-based MCP server that implements virtual try-on capabilities using the HeyBeauty API, allowing users to visualize how clothes would look on them through Claude.
        Last updated -
        38
        4
        JavaScript
        MIT License
        • Apple

      View all related MCP servers

      MCP directory API

      We provide all the information about MCP servers via our MCP API.

      curl -X GET 'https://glama.ai/api/mcp/v1/servers/attarmau/FastMCP_RecSys'

      If you have feedback or need assistance with the MCP directory API, please join our Discord server