FastMCP_RecSys

by attarmau

Integrations

  • Manages environment variables for both frontend and backend configurations of the fashion recommender.

  • Provides containerized deployment of the fashion recommendation system with separate containers for frontend, backend, and database services.

  • Powers the backend API that handles image processing and recommendation requests for the fashion recommender system.

FastMCP_RecSys

This is a CLIP-Based Fashion Recommender with MCP.

Mockup

A user uploads a clothing image → YOLO detects clothing → CLIP encodes → Recommend similar

Folder Structure

/project-root │ ├── /backend │ ├── Dockerfile │ ├── /app │ │ ├── server.py # FastAPI app code │ │ ├── /routes │ │ │ └── clothing_routes.py │ │ ├── /controllers │ │ │ └── clothing_controller.py │ │ │ └──clothing_tagging.py │ │ │ └── tag_extractor.py # Pending: define core CLIP functionality │ │ ├── schemas/ │ │ │ └── clothing_schemas.py │ │ ├── config/ │ │ │ └── tag_list_en.py $ Tool for mapping: https://jsoncrack.com/editor │ │ │ └── database.py │ │ │ └── settings.py │ │ │ └── api_keys.py │ │ └── requirements.txt │ └── .env │ ├── /fastmcp │ └── app │ └── server.py │ ├── /frontend │ ├── Dockerfile │ ├── package.json │ ├── package-lock.json │ ├── /public │ │ └── index.html │ ├── /src │ │ ├── /components │ │ │ ├── ImageUpload.jsx │ │ │ ├── DetectedTags.jsx │ │ │ └── Recommendations.jsx │ │ ├── /utils │ │ │ └── api.js │ │ ├── App.js # Main React component │ │ ├── index.js │ │ ├── index.css │ │ ├── tailwind.config.js │ │ ├── postcss.config.js │ │ └── .env │ ├── .gitignore │ ├── docker-compose.yml │ └── README.md └────── requirements.txt

Quick Start Guide

Step 1: Clone the GitHub Project

Step 2: Set Up the Python Environment

python -m venv venv source venv/bin/activate # On macOS or Linux venv\Scripts\activate # On Windows

Step 3: Install Dependencies

pip install -r requirements.txt

Step 4: Start the FastAPI Server (Backend)

uvicorn backend.app.server:app --reload

Once the server is running and the database is connected, you should see the following message in the console:

Database connected INFO: Application startup complete.

Step 5: Install Dependencies

Database connected INFO: Application startup complete.

npm install

Step 6: Start the Development Server (Frontend)

npm start

Once running, the server logs a confirmation and opens the app in your browser: http://localhost:3000/

📌 Sample Components for UI

  1. Image upload
  2. Submit button
  3. Display clothing tags + recommendations

What’s completed so far:

  1. FastAPI server is up and running (24 Apr)
  2. Database connection is set up (24 Apr)
  3. Backend architecture is functional (24 Apr)
  4. Basic front-end UI for uploading picture (25 Apr)

Next Step:

  1. Evaluate CLIP’s tagging accuracy on sample clothing images
  2. Fine-tune the tagging system for better recommendations
  3. Test the backend integration with real-time user data
  4. Set up monitoring for model performance
  5. Front-end demo
-
security - not tested
A
license - permissive license
-
quality - not tested

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

A CLIP-Based Fashion Recommender system that allows users to upload clothing images and receive tags and recommendations based on visual analysis.

  1. Mockup
    1. Folder Structure
      1. Quick Start Guide
    2. What’s completed so far:

      Related MCP Servers

      • A
        security
        A
        license
        A
        quality
        This MCP server aids users in searching and analyzing their photo library by location, labels, and people, offering functionalities like photo analysis and fuzzy matching for enhanced photo management.
        Last updated -
        14
        Python
        MIT License
        • Apple
      • -
        security
        A
        license
        -
        quality
        A Pinterest Model Context Protocol (MCP) server for image search and information retrieval
        Last updated -
        91
        10
        TypeScript
        MIT License
        • Linux
        • Apple
      • A
        security
        A
        license
        A
        quality
        Provides AI assistants access to the macOS clipboard content, supporting text, images, and binary data via OSAScript.
        Last updated -
        1
        2
        TypeScript
        MIT License
        • Apple
      • -
        security
        -
        license
        -
        quality
        An MCP server that integrates FindMine's product styling and outfit recommendation capabilities with Claude and other MCP-compatible applications, allowing users to browse products, get outfit recommendations, find similar items, and access style guidance.
        Last updated -
        7
        1
        JavaScript

      View all related MCP servers

      ID: aoxux8ydhh