MCTS MCP Server

Integrations

  • Enables integration with Ollama's local models to run MCTS analysis, allowing model selection, comparison between different Ollama models, and storing results organized by model name.

MCTS MCP 服务器

模型上下文协议 (MCP) 服务器公开了用于 AI 辅助分析和推理的高级贝叶斯蒙特卡洛树搜索 (MCTS) 引擎。

概述

此 MCP 服务器使 Claude 能够使用蒙特卡洛树搜索 (MCTS) 算法对主题、问题或文本输入进行深入的探索性分析。MCTS 算法采用贝叶斯方法系统地探索不同的角度和解释,并通过多次迭代得出富有洞察力的分析结果。

特征

  • 贝叶斯 MCTS :使用概率方法在分析过程中平衡探索与利用
  • 多次迭代分析:支持多次迭代思考,每次迭代进行多次模拟
  • 状态持久性:记住同一聊天中的关键结果、不合适的方法和回合之间的先验
  • 方法分类法:将产生的思想分为不同的哲学方法和家族
  • 汤普森抽样:可以使用汤普森抽样或UCT进行节点选择
  • 意外检测:识别令人惊讶或新颖的分析方向
  • 意图分类:了解用户何时想要开始新的分析或继续之前的分析

用法

服务器以可复制粘贴的格式向您的 LLM 公开了许多工具,详见下文,以供系统提示。

当你要求 Claude 对某个主题或问题进行深入分析时,它将自动利用这些工具,使用 MCTS 算法和分析工具探索不同的角度。

工作原理

MCTS MCP 服务器使用本地推理方法,而不是尝试直接调用 LLM。这与 MCP 协议兼容,该协议旨在供 AI 助手(如 Claude)调用工具,而不是供工具自行调用 AI 模型。

当 Claude 要求服务器执行分析时,服务器:

  1. 使用问题初始化 MCTS 系统
  2. 使用 MCTS 算法运行多次探索迭代
  3. 为各种分析任务生成确定性响应
  4. 返回搜索过程中找到的最佳分析

安装

克隆存储库:

该设置使用 UV(Astral UV),它是 pip 的更快替代方案,可提供改进的依赖关系解析。

  1. 确保已安装 Python 3.10+
  2. 运行安装脚本:
./setup.sh

这将:

  • 如果尚未安装,请安装 UV
  • 使用 UV 创建虚拟环境
  • 使用 UV 安装所需的软件包
  • 创建必要的状态目录

或者,您可以手动设置:

# Install UV if not already installed curl -fsSL https://astral.sh/uv/install.sh | bash
# Create and activate a virtual environment uv venv .venv source .venv/bin/activate # Install dependencies uv pip install -r requirements.txt

Claude 桌面集成

与 Claude Desktop 集成:

  1. 从此存储库复制claude_desktop_config.json的内容
  2. 将其添加到您的 Claude Desktop 配置中(通常位于~/.claude/claude_desktop_config.json
  3. 如果配置文件尚不存在,请创建它并添加该项目的claude_desktop_config.json中的内容
  4. 重启Claude桌面

示例配置:

{ "mcpServers": { "MCTSServer": { "command": "uv", "args": [ "run", "--directory", "/home/ty/Repositories/ai_workspace/mcts-mcp-server/src/mcts_mcp_server", "server.py" ], "env": { "PYTHONPATH": "/home/ty/Repositories/ai_workspace/mcts-mcp-server" } } } }

确保更新路径以匹配系统上 MCTS MCP 服务器的位置。

建议的系统提示和更新工具(包括 Ollama 集成),即将以下块放置在项目说明中:


MCTS server and usage instructions: MCTS server and usage instructions: list_ollama_models() # Check what models are available set_ollama_model("cogito:latest") # Set the model you want to use initialize_mcts(question="Your question here", chat_id="unique_id") # Initialize analysis run_mcts(iterations=1, simulations_per_iteration=5) # Run the analysis After run_mcts is called it can take wuite a long time ie minutes to hours - so you may discuss any ideas or questions or await user confirmation of the process finishing, - then proceed to synthesis and analysis tools on resumption of chat. ## MCTS-MCP Tools Overview ### Core MCTS Tools: - `initialize_mcts`: Start a new MCTS analysis with a specific question - `run_mcts`: Run the MCTS algorithm for a set number of iterations/simulations - `generate_synthesis`: Generate a final summary of the MCTS results - `get_config`: View current MCTS configuration parameters - `update_config`: Update MCTS configuration parameters - `get_mcts_status`: Check the current status of the MCTS system Default configuration prioritizes speed and exploration, but you can customize parameters like exploration_weight, beta_prior_alpha/beta, surprise_threshold. ## Configuration You can customize the MCTS parameters in the config dictionary or through Claude's `update_config` tool. Key parameters include: - `max_iterations`: Number of MCTS iterations to run - `simulations_per_iteration`: Number of simulations per iteration - `exploration_weight`: Controls exploration vs. exploitation balance (in UCT) - `early_stopping`: Whether to stop early if a high-quality solution is found - `use_bayesian_evaluation`: Whether to use Bayesian evaluation for node scores - `use_thompson_sampling`: Whether to use Thompson sampling for selection Articulating Specific Pathways: Delving into the best_path nodes (using mcts_instance.get_best_path_nodes() if you have the instance) and examining the sequence of thought and content at each step can provide a fascinating micro-narrative of how the core insight evolved. Visualizing the tree (even a simplified version based on export_tree_summary) could also be illuminating and I will try to set up this feature. Modifying Parameters: This is a great way to test the robustness of the finding or explore different "cognitive biases" of the system. Increasing Exploration Weight: Might lead to more diverse, less obviously connected ideas. Decreasing Exploration Weight: Might lead to deeper refinement of the initial dominant pathways. Changing Priors (if Bayesian): You could bias the system towards certain approaches (e.g., increase alpha for 'pragmatic') to see how it influences the outcome. More Iterations/Simulations: Would allow for potentially deeper convergence or exploration of more niche pathways. ### Ollama Integration Tools: - `list_ollama_models`: Show all available local Ollama models - `set_ollama_model`: Select which Ollama model to use for MCTS - `run_model_comparison`: Run the same MCTS process across multiple models ### Results Collection: - Automatically stores results in `/home/ty/Repositories/ai_workspace/mcts-mcp-server/results` - Organizes by model name and run ID - Stores metrics, progress info, and final outputs # MCTS Analysis Tools This extension adds powerful analysis tools to the MCTS-MCP Server, making it easy to extract insights and understand results from your MCTS runs. The MCTS Analysis Tools provide a suite of integrated functions to: 1. List and browse MCTS runs 2. Extract key concepts, arguments, and conclusions 3. Generate comprehensive reports 4. Compare results across different runs 5. Suggest improvements for better performance ## Available Run Analysis Tools ### Browsing and Basic Information - `list_mcts_runs(count=10, model=None)`: List recent MCTS runs with key metadata - `get_mcts_run_details(run_id)`: Get detailed information about a specific run - `get_mcts_solution(run_id)`: Get the best solution from a run ### Analysis and Insights - `analyze_mcts_run(run_id)`: Perform a comprehensive analysis of a run - `get_mcts_insights(run_id, max_insights=5)`: Extract key insights from a run - `extract_mcts_conclusions(run_id)`: Extract conclusions from a run - `suggest_mcts_improvements(run_id)`: Get suggestions for improvement ### Reporting and Comparison - `get_mcts_report(run_id, format='markdown')`: Generate a comprehensive report (formats: 'markdown', 'text', 'html') - `get_best_mcts_runs(count=5, min_score=7.0)`: Get the best runs based on score - `compare_mcts_runs(run_ids)`: Compare multiple runs to identify similarities and differences ## Usage Examples # To list your recent MCTS runs: list_mcts_runs() # To get details about a specific run: get_mcts_run_details('cogito:latest_1745979984') ### Extracting Insights # To get key insights from a run: get_mcts_insights(run_id='cogito:latest_1745979984') ### Generating Reports # To generate a comprehensive markdown report: get_mcts_report(run_id='cogito:latest_1745979984', format='markdown') ### Improving Results # To get suggestions for improving a run: suggest_mcts_improvements(run_id='cogito:latest_1745979984') ### Comparing Runs To compare multiple runs: compare_mcts_runs(['cogito:latest_1745979984', 'qwen3:0.6b_1745979584']) ## Understanding the Results The analysis tools extract several key elements from MCTS runs: 1. **Key Concepts**: The core ideas and frameworks in the analysis 2. **Arguments For/Against**: The primary arguments on both sides of a question 3. **Conclusions**: The synthesized conclusions or insights from the analysis 4. **Tags**: Automatically generated topic tags from the content ## Troubleshooting If you encounter any issues with the analysis tools: 1. Check that your MCTS run completed successfully (status: "completed") 2. Verify that the run ID you're using exists and is correct 3. Try listing all runs to see what's available: `list_mcts_runs()` 4. Make sure the `.best_solution.txt` file exists in the run's directory ## Advanced Example Usage ### Customizing Reports You can generate reports in different formats: # Generate a markdown report report = get_mcts_report(run_id='cogito:latest_1745979984', format='markdown') # Generate a text report report = get_mcts_report(run_id='cogito:latest_1745979984', format='text') # Generate an HTML report report = get_mcts_report(run_id='cogito:latest_1745979984', format='html') ### Finding the Best Runs To find your best-performing runs: best_runs = get_best_mcts_runs(count=3, min_score=8.0) This returns the top 3 runs with a score of at least 8.0. ## Simple Usage Instructions 1. **Changing Models**: list_ollama_models() # See available models set_ollama_model("qwen3:0.6b") # Set to fast small model 2. **Starting a New Analysis**: initialize_mcts(question="Your question here", chat_id="unique_identifier") 3. **Running the Analysis**: run_mcts(iterations=3, simulations_per_iteration=10) 4. **Comparing Performance**: run_model_comparison(question="Your question", iterations=2) 5. **Getting Results**: generate_synthesis() # Final summary of results get_mcts_status() # Current status and metrics

示例提示

  • “分析人工智能对人类创造力的影响”
  • “继续探索这个话题的伦理层面”
  • “您在上次运行中发现的最佳分析是什么?”
  • “这个 MCTS 流程是如何运作的?”
  • “显示当前的 MCTS 配置”

对于开发人员

# Activate virtual environment source .venv/bin/activate # Run the server directly (for testing) uv run server.py # OR use the MCP CLI tools uv run -m mcp dev server.py

测试服务器

测试服务器是否正常工作:

# Activate the virtual environment source .venv/bin/activate # Run the test script python test_server.py

这将测试 LLM 适配器以确保其正常工作。

贡献

欢迎为改进 MCTS MCP 服务器做出贡献。以下是一些潜在的改进领域:

  • 改进本地推理适配器以实现更复杂的分析
  • 添加更复杂的思维模式和评估策略
  • 增强树可视化和结果报告
  • 优化MCTS算法参数

许可证: MIT

-
security - not tested
A
license - permissive license
-
quality - not tested

local-only server

The server can only run on the client's local machine because it depends on local resources.

模型上下文协议 (MCP) 服务器使 Claude 能够使用蒙特卡洛树搜索算法对主题、问题或文本输入进行深入的探索性分析。

  1. 概述
    1. 特征
      1. 用法
        1. 工作原理
          1. 安装
            1. Claude 桌面集成
              1. 建议的系统提示和更新工具(包括 Ollama 集成),即将以下块放置在项目说明中:
                1. 示例提示
              2. 对于开发人员
                1. 测试服务器
                  1. 贡献
                    1. 许可证: MIT

                      Related MCP Servers

                      • A
                        security
                        A
                        license
                        A
                        quality
                        A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
                        Last updated -
                        1
                        2,806
                        1,458
                        TypeScript
                        MIT License
                        • Apple
                      • -
                        security
                        A
                        license
                        -
                        quality
                        A Model Context Protocol (MCP) server that exposes MiniZinc constraint solving capabilities to Large Language Models.
                        Last updated -
                        53
                        Python
                        MIT License
                        • Linux
                        • Apple
                      • -
                        security
                        A
                        license
                        -
                        quality
                        A Model Context Protocol (MCP) server that enables semantic search and retrieval of documentation using a vector database (Qdrant). This server allows you to add documentation from URLs or local files and then search through them using natural language queries.
                        Last updated -
                        14
                        74
                        JavaScript
                        Apache 2.0
                        • Apple
                      • A
                        security
                        F
                        license
                        A
                        quality
                        An MCP (Model Context Protocol) server that provides Google search capabilities and webpage content analysis tools. This server enables AI models to perform Google searches and analyze webpage content programmatically.
                        Last updated -
                        3
                        46
                        41
                        TypeScript

                      View all related MCP servers

                      ID: cz65nop4za