Skip to main content
Glama

MCTS MCP 服务器

模型上下文协议 (MCP) 服务器公开了用于 AI 辅助分析和推理的高级贝叶斯蒙特卡洛树搜索 (MCTS) 引擎。

概述

此 MCP 服务器使 Claude 能够使用蒙特卡洛树搜索 (MCTS) 算法对主题、问题或文本输入进行深入的探索性分析。MCTS 算法采用贝叶斯方法系统地探索不同的角度和解释,并通过多次迭代得出富有洞察力的分析结果。

Related MCP server: mcp-server-tree-sitter

特征

  • 贝叶斯 MCTS :使用概率方法在分析过程中平衡探索与利用

  • 多次迭代分析:支持多次迭代思考,每次迭代进行多次模拟

  • 状态持久性:记住同一聊天中的关键结果、不合适的方法和回合之间的先验

  • 方法分类法:将产生的思想分为不同的哲学方法和家族

  • 汤普森抽样:可以使用汤普森抽样或UCT进行节点选择

  • 意外检测:识别令人惊讶或新颖的分析方向

  • 意图分类:了解用户何时想要开始新的分析或继续之前的分析

用法

服务器以可复制粘贴的格式向您的 LLM 公开了许多工具,详见下文,以供系统提示。

当你要求 Claude 对某个主题或问题进行深入分析时,它将自动利用这些工具,使用 MCTS 算法和分析工具探索不同的角度。

替代文本

工作原理

MCTS MCP 服务器使用本地推理方法,而不是尝试直接调用 LLM。这与 MCP 协议兼容,该协议旨在供 AI 助手(如 Claude)调用工具,而不是供工具自行调用 AI 模型。

当 Claude 要求服务器执行分析时,服务器:

  1. 使用问题初始化 MCTS 系统

  2. 使用 MCTS 算法运行多次探索迭代

  3. 为各种分析任务生成确定性响应

  4. 返回搜索过程中找到的最佳分析

安装

克隆存储库:

该设置使用 UV(Astral UV),它是 pip 的更快替代方案,可提供改进的依赖关系解析。

  1. 确保已安装 Python 3.10+

  2. 运行安装脚本:

./setup.sh

这将:

  • 如果尚未安装,请安装 UV

  • 使用 UV 创建虚拟环境

  • 使用 UV 安装所需的软件包

  • 创建必要的状态目录

或者,您可以手动设置:

# Install UV if not already installed curl -fsSL https://astral.sh/uv/install.sh | bash
# Create and activate a virtual environment uv venv .venv source .venv/bin/activate # Install dependencies uv pip install -r requirements.txt

Claude 桌面集成

与 Claude Desktop 集成:

  1. 从此存储库复制claude_desktop_config.json的内容

  2. 将其添加到您的 Claude Desktop 配置中(通常位于~/.claude/claude_desktop_config.json

  3. 如果配置文件尚不存在,请创建它并添加该项目的claude_desktop_config.json中的内容

  4. 重启Claude桌面

示例配置:

{ "mcpServers": { "MCTSServer": { "command": "uv", "args": [ "run", "--directory", "/home/ty/Repositories/ai_workspace/mcts-mcp-server/src/mcts_mcp_server", "server.py" ], "env": { "PYTHONPATH": "/home/ty/Repositories/ai_workspace/mcts-mcp-server" } } } }

确保更新路径以匹配系统上 MCTS MCP 服务器的位置。

建议的系统提示和更新工具(包括 Ollama 集成),即将以下块放置在项目说明中:


MCTS server and usage instructions: MCTS server and usage instructions: list_ollama_models() # Check what models are available set_ollama_model("cogito:latest") # Set the model you want to use initialize_mcts(question="Your question here", chat_id="unique_id") # Initialize analysis run_mcts(iterations=1, simulations_per_iteration=5) # Run the analysis After run_mcts is called it can take wuite a long time ie minutes to hours - so you may discuss any ideas or questions or await user confirmation of the process finishing, - then proceed to synthesis and analysis tools on resumption of chat. ## MCTS-MCP Tools Overview ### Core MCTS Tools: - `initialize_mcts`: Start a new MCTS analysis with a specific question - `run_mcts`: Run the MCTS algorithm for a set number of iterations/simulations - `generate_synthesis`: Generate a final summary of the MCTS results - `get_config`: View current MCTS configuration parameters - `update_config`: Update MCTS configuration parameters - `get_mcts_status`: Check the current status of the MCTS system Default configuration prioritizes speed and exploration, but you can customize parameters like exploration_weight, beta_prior_alpha/beta, surprise_threshold. ## Configuration You can customize the MCTS parameters in the config dictionary or through Claude's `update_config` tool. Key parameters include: - `max_iterations`: Number of MCTS iterations to run - `simulations_per_iteration`: Number of simulations per iteration - `exploration_weight`: Controls exploration vs. exploitation balance (in UCT) - `early_stopping`: Whether to stop early if a high-quality solution is found - `use_bayesian_evaluation`: Whether to use Bayesian evaluation for node scores - `use_thompson_sampling`: Whether to use Thompson sampling for selection Articulating Specific Pathways: Delving into the best_path nodes (using mcts_instance.get_best_path_nodes() if you have the instance) and examining the sequence of thought and content at each step can provide a fascinating micro-narrative of how the core insight evolved. Visualizing the tree (even a simplified version based on export_tree_summary) could also be illuminating and I will try to set up this feature. Modifying Parameters: This is a great way to test the robustness of the finding or explore different "cognitive biases" of the system. Increasing Exploration Weight: Might lead to more diverse, less obviously connected ideas. Decreasing Exploration Weight: Might lead to deeper refinement of the initial dominant pathways. Changing Priors (if Bayesian): You could bias the system towards certain approaches (e.g., increase alpha for 'pragmatic') to see how it influences the outcome. More Iterations/Simulations: Would allow for potentially deeper convergence or exploration of more niche pathways. ### Ollama Integration Tools: - `list_ollama_models`: Show all available local Ollama models - `set_ollama_model`: Select which Ollama model to use for MCTS - `run_model_comparison`: Run the same MCTS process across multiple models ### Results Collection: - Automatically stores results in `/home/ty/Repositories/ai_workspace/mcts-mcp-server/results` - Organizes by model name and run ID - Stores metrics, progress info, and final outputs # MCTS Analysis Tools This extension adds powerful analysis tools to the MCTS-MCP Server, making it easy to extract insights and understand results from your MCTS runs. The MCTS Analysis Tools provide a suite of integrated functions to: 1. List and browse MCTS runs 2. Extract key concepts, arguments, and conclusions 3. Generate comprehensive reports 4. Compare results across different runs 5. Suggest improvements for better performance ## Available Run Analysis Tools ### Browsing and Basic Information - `list_mcts_runs(count=10, model=None)`: List recent MCTS runs with key metadata - `get_mcts_run_details(run_id)`: Get detailed information about a specific run - `get_mcts_solution(run_id)`: Get the best solution from a run ### Analysis and Insights - `analyze_mcts_run(run_id)`: Perform a comprehensive analysis of a run - `get_mcts_insights(run_id, max_insights=5)`: Extract key insights from a run - `extract_mcts_conclusions(run_id)`: Extract conclusions from a run - `suggest_mcts_improvements(run_id)`: Get suggestions for improvement ### Reporting and Comparison - `get_mcts_report(run_id, format='markdown')`: Generate a comprehensive report (formats: 'markdown', 'text', 'html') - `get_best_mcts_runs(count=5, min_score=7.0)`: Get the best runs based on score - `compare_mcts_runs(run_ids)`: Compare multiple runs to identify similarities and differences ## Usage Examples # To list your recent MCTS runs: list_mcts_runs() # To get details about a specific run: get_mcts_run_details('cogito:latest_1745979984') ### Extracting Insights # To get key insights from a run: get_mcts_insights(run_id='cogito:latest_1745979984') ### Generating Reports # To generate a comprehensive markdown report: get_mcts_report(run_id='cogito:latest_1745979984', format='markdown') ### Improving Results # To get suggestions for improving a run: suggest_mcts_improvements(run_id='cogito:latest_1745979984') ### Comparing Runs To compare multiple runs: compare_mcts_runs(['cogito:latest_1745979984', 'qwen3:0.6b_1745979584']) ## Understanding the Results The analysis tools extract several key elements from MCTS runs: 1. **Key Concepts**: The core ideas and frameworks in the analysis 2. **Arguments For/Against**: The primary arguments on both sides of a question 3. **Conclusions**: The synthesized conclusions or insights from the analysis 4. **Tags**: Automatically generated topic tags from the content ## Troubleshooting If you encounter any issues with the analysis tools: 1. Check that your MCTS run completed successfully (status: "completed") 2. Verify that the run ID you're using exists and is correct 3. Try listing all runs to see what's available: `list_mcts_runs()` 4. Make sure the `.best_solution.txt` file exists in the run's directory ## Advanced Example Usage ### Customizing Reports You can generate reports in different formats: # Generate a markdown report report = get_mcts_report(run_id='cogito:latest_1745979984', format='markdown') # Generate a text report report = get_mcts_report(run_id='cogito:latest_1745979984', format='text') # Generate an HTML report report = get_mcts_report(run_id='cogito:latest_1745979984', format='html') ### Finding the Best Runs To find your best-performing runs: best_runs = get_best_mcts_runs(count=3, min_score=8.0) This returns the top 3 runs with a score of at least 8.0. ## Simple Usage Instructions 1. **Changing Models**: list_ollama_models() # See available models set_ollama_model("qwen3:0.6b") # Set to fast small model 2. **Starting a New Analysis**: initialize_mcts(question="Your question here", chat_id="unique_identifier") 3. **Running the Analysis**: run_mcts(iterations=3, simulations_per_iteration=10) 4. **Comparing Performance**: run_model_comparison(question="Your question", iterations=2) 5. **Getting Results**: generate_synthesis() # Final summary of results get_mcts_status() # Current status and metrics

示例提示

  • “分析人工智能对人类创造力的影响”

  • “继续探索这个话题的伦理层面”

  • “您在上次运行中发现的最佳分析是什么?”

  • “这个 MCTS 流程是如何运作的?”

  • “显示当前的 MCTS 配置”

替代文本

对于开发人员

# Activate virtual environment source .venv/bin/activate # Run the server directly (for testing) uv run server.py # OR use the MCP CLI tools uv run -m mcp dev server.py

测试服务器

测试服务器是否正常工作:

# Activate the virtual environment source .venv/bin/activate # Run the test script python test_server.py

这将测试 LLM 适配器以确保其正常工作。

贡献

欢迎为改进 MCTS MCP 服务器做出贡献。以下是一些潜在的改进领域:

  • 改进本地推理适配器以实现更复杂的分析

  • 添加更复杂的思维模式和评估策略

  • 增强树可视化和结果报告

  • 优化MCTS算法参数

许可证: MIT

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/angrysky56/mcts-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server