Skip to main content
Glama
andyl25

Google Cloud MCP Server

by andyl25

spanner-query-count

Count Google Cloud Spanner queries by type and status within specified time ranges to monitor database performance and identify issues.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
instanceIdNoSpanner instance ID (optional, if not provided will show all instances)
databaseIdNoSpanner database ID (optional, if not provided will show all databases)
queryTypeNoType of queries to count (ALL, READ, QUERY)ALL
statusNoStatus of queries to count (ALL, OK, ERROR)ALL
startTimeNoStart time for the query (e.g., "1h", "2d", "30m")1h
endTimeNoEnd time for the query (defaults to now)
alignmentPeriodNoAlignment period for aggregating data points (e.g., "60s", "5m", "1h")60s

Implementation Reference

  • The asynchronous handler function implementing the core logic of the 'spanner-query-count' tool. It queries Google Cloud Monitoring API for Spanner query count metrics based on provided filters (instance, database, query type, status, time range), aggregates the data, and formats it into a Markdown report with tables.
    async ({ instanceId, databaseId, queryType, status, startTime, endTime, alignmentPeriod }, context) => { try { const projectId = await getProjectId(); const client = new MetricServiceClient({ projectId: process.env.GOOGLE_CLOUD_PROJECT }); // Parse time range const start = parseRelativeTime(startTime); const end = endTime ? parseRelativeTime(endTime) : new Date(); // Build filter for the metric let filter = 'metric.type = "spanner.googleapis.com/query_count"'; // Add resource filters if specified if (instanceId) { filter += ` AND resource.labels.instance_id = "${instanceId}"`; } // Add metric label filters if (databaseId) { filter += ` AND metric.labels.database = "${databaseId}"`; } if (queryType !== 'ALL') { filter += ` AND metric.labels.query_type = "${queryType.toLowerCase()}"`; } if (status !== 'ALL') { filter += ` AND metric.labels.status = "${status.toLowerCase()}"`; } // Parse alignment period (e.g., "60s" -> 60 seconds) const match = alignmentPeriod.match(/^(\d+)([smhd])$/); if (!match) { throw new GcpMcpError( 'Invalid alignment period format. Use format like "60s", "5m", "1h".', 'INVALID_ARGUMENT', 400 ); } const value = parseInt(match[1]); const unit = match[2]; let seconds = value; switch (unit) { case 'm': // minutes seconds = value * 60; break; case 'h': // hours seconds = value * 60 * 60; break; case 'd': // days seconds = value * 60 * 60 * 24; break; } // Build the request const request = { name: `projects/${projectId}`, filter, interval: { startTime: { seconds: Math.floor(start.getTime() / 1000), nanos: 0 }, endTime: { seconds: Math.floor(end.getTime() / 1000), nanos: 0 } }, aggregation: { alignmentPeriod: { seconds }, perSeriesAligner: 'ALIGN_SUM', crossSeriesReducer: 'REDUCE_SUM' } }; // Execute the request const timeSeriesData = await client.listTimeSeries(request as any); const timeSeries = timeSeriesData[0]; if (!timeSeries || timeSeries.length === 0) { return { content: [{ type: 'text', text: `# Spanner Query Count\n\nProject: ${projectId}\n${instanceId ? `\nInstance: ${instanceId}` : ''}\n${databaseId ? `\nDatabase: ${databaseId}` : ''}\n\nQuery Type: ${queryType}\nStatus: ${status}\nTime Range: ${start.toISOString()} to ${end.toISOString()}\nAlignment Period: ${alignmentPeriod}\n\nNo query count data found for the specified parameters.` }] }; } // Format the results let markdown = `# Spanner Query Count\n\nProject: ${projectId}\n${instanceId ? `\nInstance: ${instanceId}` : ''}\n${databaseId ? `\nDatabase: ${databaseId}` : ''}\n\nQuery Type: ${queryType}\nStatus: ${status}\nTime Range: ${start.toISOString()} to ${end.toISOString()}\nAlignment Period: ${alignmentPeriod}\n\n`; // Create a table for each time series for (const series of timeSeries) { const seriesData = series as unknown as TimeSeriesData; // Extract labels for the table header const instanceName = seriesData.resource.labels.instance_id || 'unknown'; const databaseName = seriesData.metric.labels?.database || 'all'; const queryTypeValue = seriesData.metric.labels?.query_type || 'all'; const statusValue = seriesData.metric.labels?.status || 'all'; const optimizerVersion = seriesData.metric.labels?.optimizer_version || 'unknown'; markdown += `## Instance: ${instanceName}, Database: ${databaseName}\n`; markdown += `Query Type: ${queryTypeValue}, Status: ${statusValue}, Optimizer Version: ${optimizerVersion}\n\n`; // Table header markdown += '| Timestamp | Query Count |\n'; markdown += '|-----------|------------|\n'; // Table rows if (seriesData.points && seriesData.points.length > 0) { // Sort points by time (oldest first) const sortedPoints = [...seriesData.points].sort((a, b) => { const aTime = Number(a.interval.startTime.seconds); const bTime = Number(b.interval.startTime.seconds); return aTime - bTime; }); for (const point of sortedPoints) { const timestamp = new Date(Number(point.interval.endTime.seconds) * 1000).toISOString(); const count = point.value.int64Value || '0'; markdown += `| ${timestamp} | ${count} |\n`; } } else { markdown += '| No data | 0 |\n'; } markdown += '\n'; } return { content: [{ type: 'text', text: markdown }] }; } catch (error: any) { console.error('Error in spanner-query-count tool:', error); throw error; } }
  • Zod schema defining the input parameters for the 'spanner-query-count' tool, including optional instanceId, databaseId, queryType (ALL/READ/QUERY), status (ALL/OK/ERROR), startTime, endTime, and alignmentPeriod.
    instanceId: z.string().optional().describe('Spanner instance ID (optional, if not provided will show all instances)'), databaseId: z.string().optional().describe('Spanner database ID (optional, if not provided will show all databases)'), queryType: z.enum(['ALL', 'READ', 'QUERY']).default('ALL').describe('Type of queries to count (ALL, READ, QUERY)'), status: z.enum(['ALL', 'OK', 'ERROR']).default('ALL').describe('Status of queries to count (ALL, OK, ERROR)'), startTime: z.string().default('1h').describe('Start time for the query (e.g., "1h", "2d", "30m")'), endTime: z.string().optional().describe('End time for the query (defaults to now)'), alignmentPeriod: z.string().default('60s').describe('Alignment period for aggregating data points (e.g., "60s", "5m", "1h")') },
  • The registerSpannerQueryCountTool export function that calls server.tool to register the 'spanner-query-count' tool with its schema and handler on the MCP server.
    export function registerSpannerQueryCountTool(server: McpServer): void { server.tool( 'spanner-query-count', { instanceId: z.string().optional().describe('Spanner instance ID (optional, if not provided will show all instances)'), databaseId: z.string().optional().describe('Spanner database ID (optional, if not provided will show all databases)'), queryType: z.enum(['ALL', 'READ', 'QUERY']).default('ALL').describe('Type of queries to count (ALL, READ, QUERY)'), status: z.enum(['ALL', 'OK', 'ERROR']).default('ALL').describe('Status of queries to count (ALL, OK, ERROR)'), startTime: z.string().default('1h').describe('Start time for the query (e.g., "1h", "2d", "30m")'), endTime: z.string().optional().describe('End time for the query (defaults to now)'), alignmentPeriod: z.string().default('60s').describe('Alignment period for aggregating data points (e.g., "60s", "5m", "1h")') }, async ({ instanceId, databaseId, queryType, status, startTime, endTime, alignmentPeriod }, context) => { try { const projectId = await getProjectId(); const client = new MetricServiceClient({ projectId: process.env.GOOGLE_CLOUD_PROJECT }); // Parse time range const start = parseRelativeTime(startTime); const end = endTime ? parseRelativeTime(endTime) : new Date(); // Build filter for the metric let filter = 'metric.type = "spanner.googleapis.com/query_count"'; // Add resource filters if specified if (instanceId) { filter += ` AND resource.labels.instance_id = "${instanceId}"`; } // Add metric label filters if (databaseId) { filter += ` AND metric.labels.database = "${databaseId}"`; } if (queryType !== 'ALL') { filter += ` AND metric.labels.query_type = "${queryType.toLowerCase()}"`; } if (status !== 'ALL') { filter += ` AND metric.labels.status = "${status.toLowerCase()}"`; } // Parse alignment period (e.g., "60s" -> 60 seconds) const match = alignmentPeriod.match(/^(\d+)([smhd])$/); if (!match) { throw new GcpMcpError( 'Invalid alignment period format. Use format like "60s", "5m", "1h".', 'INVALID_ARGUMENT', 400 ); } const value = parseInt(match[1]); const unit = match[2]; let seconds = value; switch (unit) { case 'm': // minutes seconds = value * 60; break; case 'h': // hours seconds = value * 60 * 60; break; case 'd': // days seconds = value * 60 * 60 * 24; break; } // Build the request const request = { name: `projects/${projectId}`, filter, interval: { startTime: { seconds: Math.floor(start.getTime() / 1000), nanos: 0 }, endTime: { seconds: Math.floor(end.getTime() / 1000), nanos: 0 } }, aggregation: { alignmentPeriod: { seconds }, perSeriesAligner: 'ALIGN_SUM', crossSeriesReducer: 'REDUCE_SUM' } }; // Execute the request const timeSeriesData = await client.listTimeSeries(request as any); const timeSeries = timeSeriesData[0]; if (!timeSeries || timeSeries.length === 0) { return { content: [{ type: 'text', text: `# Spanner Query Count\n\nProject: ${projectId}\n${instanceId ? `\nInstance: ${instanceId}` : ''}\n${databaseId ? `\nDatabase: ${databaseId}` : ''}\n\nQuery Type: ${queryType}\nStatus: ${status}\nTime Range: ${start.toISOString()} to ${end.toISOString()}\nAlignment Period: ${alignmentPeriod}\n\nNo query count data found for the specified parameters.` }] }; } // Format the results let markdown = `# Spanner Query Count\n\nProject: ${projectId}\n${instanceId ? `\nInstance: ${instanceId}` : ''}\n${databaseId ? `\nDatabase: ${databaseId}` : ''}\n\nQuery Type: ${queryType}\nStatus: ${status}\nTime Range: ${start.toISOString()} to ${end.toISOString()}\nAlignment Period: ${alignmentPeriod}\n\n`; // Create a table for each time series for (const series of timeSeries) { const seriesData = series as unknown as TimeSeriesData; // Extract labels for the table header const instanceName = seriesData.resource.labels.instance_id || 'unknown'; const databaseName = seriesData.metric.labels?.database || 'all'; const queryTypeValue = seriesData.metric.labels?.query_type || 'all'; const statusValue = seriesData.metric.labels?.status || 'all'; const optimizerVersion = seriesData.metric.labels?.optimizer_version || 'unknown'; markdown += `## Instance: ${instanceName}, Database: ${databaseName}\n`; markdown += `Query Type: ${queryTypeValue}, Status: ${statusValue}, Optimizer Version: ${optimizerVersion}\n\n`; // Table header markdown += '| Timestamp | Query Count |\n'; markdown += '|-----------|------------|\n'; // Table rows if (seriesData.points && seriesData.points.length > 0) { // Sort points by time (oldest first) const sortedPoints = [...seriesData.points].sort((a, b) => { const aTime = Number(a.interval.startTime.seconds); const bTime = Number(b.interval.startTime.seconds); return aTime - bTime; }); for (const point of sortedPoints) { const timestamp = new Date(Number(point.interval.endTime.seconds) * 1000).toISOString(); const count = point.value.int64Value || '0'; markdown += `| ${timestamp} | ${count} |\n`; } } else { markdown += '| No data | 0 |\n'; } markdown += '\n'; } return { content: [{ type: 'text', text: markdown }] }; } catch (error: any) { console.error('Error in spanner-query-count tool:', error); throw error; } } ); }
  • src/index.ts:141-141 (registration)
    Invocation of registerSpannerQueryCountTool(server) during main server startup to enable the tool.
    registerSpannerQueryCountTool(server);

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/andyl25/googlecloud-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server