Skip to main content
Glama
andyl25

Google Cloud MCP Server

by andyl25

natural-language-metrics-query

Query Google Cloud Monitoring metrics using natural language. Specify time ranges and alignment periods to retrieve monitoring data without writing complex queries.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
queryYesNatural language description of the query you want to execute
startTimeNoStart time in ISO format or relative time (e.g., "1h", "2d")
endTimeNoEnd time in ISO format (defaults to now)
alignmentPeriodNoAlignment period (e.g., "60s", "300s")

Implementation Reference

  • The main handler function that processes natural language queries by generating a metric filter using metricsLookup.suggestFilter, constructs a Monitoring API request with time range and optional alignment, fetches time series data, and formats the results for display.
    async ({ query, startTime, endTime, alignmentPeriod }, context) => { try { const projectId = await getProjectId(); // Use the metrics lookup to suggest a filter based on the natural language query const suggestedFilter = metricsLookup.suggestFilter(query); if (!suggestedFilter) { throw new GcpMcpError( 'Could not determine an appropriate metric filter from your query. Please try a more specific query that mentions a metric type.', 'INVALID_ARGUMENT', 400 ); } // Use default time range if not specified const start = startTime ? parseRelativeTime(startTime) : parseRelativeTime('1h'); const end = endTime ? parseRelativeTime(endTime) : new Date(); const client = getMonitoringClient(); // Build request const request: any = { name: `projects/${projectId}`, filter: suggestedFilter, interval: { startTime: { seconds: Math.floor(start.getTime() / 1000), nanos: 0 }, endTime: { seconds: Math.floor(end.getTime() / 1000), nanos: 0 } } }; // Add alignment if specified if (alignmentPeriod) { // Parse alignment period (e.g., "60s" -> 60 seconds) const match = alignmentPeriod.match(/^(\d+)([smhd])$/); if (!match) { throw new GcpMcpError( 'Invalid alignment period format. Use format like "60s", "5m", "1h".', 'INVALID_ARGUMENT', 400 ); } const value = parseInt(match[1]); const unit = match[2]; let seconds = value; switch (unit) { case 'm': // minutes seconds = value * 60; break; case 'h': // hours seconds = value * 60 * 60; break; case 'd': // days seconds = value * 60 * 60 * 24; break; } request.aggregation = { alignmentPeriod: { seconds: seconds }, perSeriesAligner: 'ALIGN_MEAN' }; } const [timeSeries] = await client.listTimeSeries(request); if (!timeSeries || timeSeries.length === 0) { return { content: [{ type: 'text', text: `# Natural Language Query Results\n\nProject: ${projectId}\nQuery: ${query}\nGenerated Filter: ${suggestedFilter}\nTime Range: ${start.toISOString()} to ${end.toISOString()}\n\nNo metrics found matching the filter.\n\nTry refining your query to be more specific about the metric type, resource type, or labels.` }] }; } const formattedData = formatTimeSeriesData(timeSeries as unknown as TimeSeriesData[]); return { content: [{ type: 'text', text: `# Natural Language Query Results\n\nProject: ${projectId}\nQuery: ${query}\nGenerated Filter: ${suggestedFilter}\nTime Range: ${start.toISOString()} to ${end.toISOString()}${alignmentPeriod ? `\nAlignment: ${alignmentPeriod}` : ''}\n\n${formattedData}` }] }; } catch (error: any) { // Error handling for natural-language-metrics-query tool throw new GcpMcpError( `Failed to execute natural language query: ${error.message}`, error.code || 'UNKNOWN', error.statusCode || 500 ); }
  • Zod schema defining the input parameters for the natural-language-metrics-query tool: query (required string), optional startTime, endTime, and alignmentPeriod.
    { query: z.string().describe('Natural language description of the query you want to execute'), startTime: z.string().optional().describe('Start time in ISO format or relative time (e.g., "1h", "2d")'), endTime: z.string().optional().describe('End time in ISO format (defaults to now)'), alignmentPeriod: z.string().optional().describe('Alignment period (e.g., "60s", "300s")') },
  • Registers the 'natural-language-metrics-query' tool on the MCP server with input schema and handler function inside the registerMonitoringTools function.
    server.tool( 'natural-language-metrics-query', { query: z.string().describe('Natural language description of the query you want to execute'), startTime: z.string().optional().describe('Start time in ISO format or relative time (e.g., "1h", "2d")'), endTime: z.string().optional().describe('End time in ISO format (defaults to now)'), alignmentPeriod: z.string().optional().describe('Alignment period (e.g., "60s", "300s")') }, async ({ query, startTime, endTime, alignmentPeriod }, context) => { try { const projectId = await getProjectId(); // Use the metrics lookup to suggest a filter based on the natural language query const suggestedFilter = metricsLookup.suggestFilter(query); if (!suggestedFilter) { throw new GcpMcpError( 'Could not determine an appropriate metric filter from your query. Please try a more specific query that mentions a metric type.', 'INVALID_ARGUMENT', 400 ); } // Use default time range if not specified const start = startTime ? parseRelativeTime(startTime) : parseRelativeTime('1h'); const end = endTime ? parseRelativeTime(endTime) : new Date(); const client = getMonitoringClient(); // Build request const request: any = { name: `projects/${projectId}`, filter: suggestedFilter, interval: { startTime: { seconds: Math.floor(start.getTime() / 1000), nanos: 0 }, endTime: { seconds: Math.floor(end.getTime() / 1000), nanos: 0 } } }; // Add alignment if specified if (alignmentPeriod) { // Parse alignment period (e.g., "60s" -> 60 seconds) const match = alignmentPeriod.match(/^(\d+)([smhd])$/); if (!match) { throw new GcpMcpError( 'Invalid alignment period format. Use format like "60s", "5m", "1h".', 'INVALID_ARGUMENT', 400 ); } const value = parseInt(match[1]); const unit = match[2]; let seconds = value; switch (unit) { case 'm': // minutes seconds = value * 60; break; case 'h': // hours seconds = value * 60 * 60; break; case 'd': // days seconds = value * 60 * 60 * 24; break; } request.aggregation = { alignmentPeriod: { seconds: seconds }, perSeriesAligner: 'ALIGN_MEAN' }; } const [timeSeries] = await client.listTimeSeries(request); if (!timeSeries || timeSeries.length === 0) { return { content: [{ type: 'text', text: `# Natural Language Query Results\n\nProject: ${projectId}\nQuery: ${query}\nGenerated Filter: ${suggestedFilter}\nTime Range: ${start.toISOString()} to ${end.toISOString()}\n\nNo metrics found matching the filter.\n\nTry refining your query to be more specific about the metric type, resource type, or labels.` }] }; } const formattedData = formatTimeSeriesData(timeSeries as unknown as TimeSeriesData[]); return { content: [{ type: 'text', text: `# Natural Language Query Results\n\nProject: ${projectId}\nQuery: ${query}\nGenerated Filter: ${suggestedFilter}\nTime Range: ${start.toISOString()} to ${end.toISOString()}${alignmentPeriod ? `\nAlignment: ${alignmentPeriod}` : ''}\n\n${formattedData}` }] }; } catch (error: any) { // Error handling for natural-language-metrics-query tool throw new GcpMcpError( `Failed to execute natural language query: ${error.message}`, error.code || 'UNKNOWN', error.statusCode || 500 ); } } );
  • Core helper method that translates natural language queries into Google Cloud Monitoring filter strings by finding the best matching metric and extracting resource types and labels from the query.
    suggestFilter(query: string): string { const metrics = this.findMetrics(query); if (metrics.length === 0) { return ''; } // Use the top matching metric to create a filter const topMetric = metrics[0]; // Basic filter with just the metric type let filter = `metric.type="${topMetric.type}"`; // Try to extract additional filter conditions from the query const resourceMatch = /resource\s+(?:type|is|equals?)\s+["']?([a-zA-Z0-9_]+)["']?/i.exec(query); if (resourceMatch && resourceMatch[1]) { filter += ` AND resource.type="${resourceMatch[1]}"`; } // Look for label conditions for (const label of topMetric.labels) { const labelRegex = new RegExp(`${label.name}\\s+(?:is|equals?|=)\\s+["']?([\\w-]+)["']?`, 'i'); const match = labelRegex.exec(query); if (match && match[1]) { filter += ` AND metric.labels.${label.name}="${match[1]}"`; } } return filter; }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/andyl25/googlecloud-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server