Skip to main content
Glama

MCP Qdrant Server with OpenAI Embeddings

MCP Qdrant Server with OpenAI Embeddings

This MCP server provides vector search capabilities using Qdrant vector database and OpenAI embeddings.

Features

  • Semantic search in Qdrant collections using OpenAI embeddings
  • List available collections
  • View collection information

Prerequisites

  • Python 3.10+ installed
  • Qdrant instance (local or remote)
  • OpenAI API key

Installation

Installing via Smithery

To install Qdrant Vector Search Server for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @amansingh0311/mcp-qdrant-openai --client claude

Manual Installation

  1. Clone this repository:
    git clone https://github.com/yourusername/mcp-qdrant-openai.git cd mcp-qdrant-openai
  2. Install dependencies:
    pip install -r requirements.txt

Configuration

Set the following environment variables:

  • OPENAI_API_KEY: Your OpenAI API key
  • QDRANT_URL: URL to your Qdrant instance (default: "http://localhost:6333")
  • QDRANT_API_KEY: Your Qdrant API key (if applicable)

Usage

Run the server directly

python mcp_qdrant_server.py

Run with MCP CLI

mcp dev mcp_qdrant_server.py

Installing in Claude Desktop

mcp install mcp_qdrant_server.py --name "Qdrant-OpenAI"

Available Tools

query_collection

Search a Qdrant collection using semantic search with OpenAI embeddings.

  • collection_name: Name of the Qdrant collection to search
  • query_text: The search query in natural language
  • limit: Maximum number of results to return (default: 5)
  • model: OpenAI embedding model to use (default: text-embedding-3-small)

list_collections

List all available collections in the Qdrant database.

collection_info

Get information about a specific collection.

  • collection_name: Name of the collection to get information about

Example Usage in Claude Desktop

Once installed in Claude Desktop, you can use the tools like this:

What collections are available in my Qdrant database? Search for documents about climate change in my "documents" collection. Show me information about the "articles" collection.
-
security - not tested
F
license - not found
-
quality - not tested

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

Este servidor permite capacidades de búsqueda semántica utilizando la base de datos vectorial Qdrant e incrustaciones de OpenAI, lo que permite a los usuarios consultar colecciones, enumerar colecciones disponibles y ver información de colecciones.

  1. Características
    1. Prerrequisitos
      1. Instalación
        1. Configuración
          1. Uso
            1. Ejecutar el servidor directamente
            2. Ejecutar con MCP CLI
            3. Instalación en Claude Desktop
          2. Herramientas disponibles
            1. colección de consultas
            2. listas_colecciones
            3. información de la colección
          3. Ejemplo de uso en Claude Desktop

            Related MCP Servers

            • -
              security
              A
              license
              -
              quality
              Provides RAG capabilities for semantic document search using Qdrant vector database and Ollama/OpenAI embeddings, allowing users to add, search, list, and delete documentation with metadata support.
              Last updated -
              3
              16
              Apache 2.0
            • A
              security
              A
              license
              A
              quality
              A Model Context Protocol server that enables semantic search capabilities by providing tools to manage Qdrant vector database collections, process and embed documents using various embedding services, and perform semantic searches across vector embeddings.
              Last updated -
              4
              20
              MIT License
            • -
              security
              A
              license
              -
              quality
              Enables semantic search across multiple Qdrant vector database collections, supporting multi-query capability and providing semantically relevant document retrieval with configurable result counts.
              Last updated -
              46
              MIT License
            • -
              security
              F
              license
              -
              quality
              A FastAPI-based application that enables document embedding and semantic retrieval using Qdrant vector database, allowing users to convert documents into embeddings and retrieve relevant content through natural language queries.
              Last updated -
              • Linux
              • Apple

            View all related MCP servers

            MCP directory API

            We provide all the information about MCP servers via our MCP API.

            curl -X GET 'https://glama.ai/api/mcp/v1/servers/amansingh0311/mcp-qdrant-openai'

            If you have feedback or need assistance with the MCP directory API, please join our Discord server