Skip to main content
Glama
solr_default_vectorizer.py2.28 kB
"""Tool for getting information about the default vector provider.""" import re from typing import Any, Dict from urllib.parse import urlparse from solr_mcp.tools.tool_decorator import tool from solr_mcp.vector_provider.constants import DEFAULT_OLLAMA_CONFIG, MODEL_DIMENSIONS @tool() async def get_default_text_vectorizer(mcp) -> Dict[str, Any]: """Get information about the default vector provider used for semantic search. Returns information about the default vector provider configuration used for semantic search, including the model name, vector dimensionality, host, and port. This information is useful for ensuring that your vector fields in Solr have the correct dimensionality to match the vector provider model. Returns: Dictionary containing: - vector_provider_model: The name of the default vector provider model - vector_provider_dimension: The dimensionality of vectors produced by this model - vector_provider_host: The host of the vector provider service - vector_provider_port: The port of the vector provider service - vector_provider_url: The full URL of the vector provider service """ if hasattr(mcp, "solr_client") and hasattr(mcp.solr_client, "vector_manager"): vector_manager = mcp.solr_client.vector_manager model_name = vector_manager.client.model dimension = MODEL_DIMENSIONS.get(model_name, 768) base_url = vector_manager.client.base_url else: # Fall back to defaults model_name = DEFAULT_OLLAMA_CONFIG["model"] dimension = MODEL_DIMENSIONS.get(model_name, 768) base_url = DEFAULT_OLLAMA_CONFIG["base_url"] # Parse URL to extract host and port parsed_url = urlparse(base_url) host = parsed_url.hostname or "localhost" port = parsed_url.port or 11434 # Default Ollama port # Format as "model@host:port" for easy use with vector_provider parameter formatted_spec = f"{model_name}@{host}:{port}" return { "vector_provider_model": model_name, "vector_provider_dimension": dimension, "vector_provider_host": host, "vector_provider_port": port, "vector_provider_url": base_url, "vector_provider_spec": formatted_spec, }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/allenday/solr-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server