Skip to main content
Glama

MCP Server for continue.dev

by alexsmirnov
config.py1.9 kB
# mcps/config.py from dataclasses import dataclass, field from pathlib import Path from typing import Dict from dotenv import load_dotenv import os @dataclass class ServerConfig: prompts_dir: Path = field(default_factory=lambda: Path(__file__).parent / "prompts") cache_dir: Path = field(default_factory=lambda: Path(__file__).parent / "cache") tests_dir: Path = field(default_factory=lambda: Path(__file__).parent / "tests") library_docs: Dict[str, str] = field(default_factory=dict) project_paths: Dict[str, str] = field(default_factory=dict) openai_api_key: str = "" anthropic_api_key: str = "" perplexity_api_key: str = "" def create_config( prompts_dir: Path = Path("./prompts"), cache_dir: Path = Path("./cache"), tests_dir: Path = Path("./tests"), library_docs: Dict[str, str] | None = None, project_paths: Dict[str, str] | None = None, ) -> ServerConfig: """ Creates a ServerConfig instance, ensuring directories exist and handling default values for library_docs and project_paths. """ # Load environment variables from .env files for env_path in [ Path(__file__).parent.parent.parent, Path.home() ]: dotenv_path = env_path / ".env" if dotenv_path.exists(): load_dotenv(dotenv_path) # Use provided dictionaries or default to empty dictionaries library_docs = library_docs if library_docs is not None else {} project_paths = project_paths if project_paths is not None else {} return ServerConfig( prompts_dir=prompts_dir, cache_dir=cache_dir, tests_dir=tests_dir, library_docs=library_docs, project_paths=project_paths, openai_api_key=os.getenv("OPENAI_API_KEY", ""), anthropic_api_key=os.getenv("ANTHROPIC_API_KEY", ""), perplexity_api_key=os.getenv("PERPLEXITY_API_KEY", ""), )

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/alexsmirnov/mcp-server-continue'

If you have feedback or need assistance with the MCP directory API, please join our Discord server