# Multi-Layer RAG System Implementation
## System Architecture
### Overview
The elite RAG system implements 5 distinct retrieval layers that work together to provide contextually rich, accurate, and relevant responses for different types of queries and use cases.
## Layer 1: Semantic Context Retrieval
### Purpose
Find conceptually similar content using vector embeddings and semantic similarity.
### Implementation
```python
# Core semantic search with multiple embedding models
class SemanticRetriever:
def __init__(self):
self.models = {
'general': 'text-embedding-3-large',
'technical': 'text-embedding-ada-002',
'domain_specific': 'custom-trained-embeddings'
}
def retrieve(self, query: str, context_type: str = 'general') -> List[Document]:
model = self.models[context_type]
# Hybrid semantic + keyword search
semantic_results = self.vector_search(query, model)
keyword_results = self.bm25_search(query)
return self.rerank(semantic_results + keyword_results, query)
```
### Retrieval Strategies
- **Hybrid Search**: Combine semantic similarity with keyword matching
- **Domain-Aware**: Use specialized embeddings for different knowledge domains
- **Context-Weighted**: Prioritize recent and frequently accessed content
## Layer 2: Graph Traversal Retrieval
### Purpose
Expand context by following links and relationships in the knowledge graph.
### Implementation
```python
class GraphRetriever:
def __init__(self):
self.graph = self.build_knowledge_graph()
def retrieve(self, seed_documents: List[Document], depth: int = 2) -> List[Document]:
expanded_context = []
for doc in seed_documents:
# Follow direct links
linked_docs = self.get_linked_documents(doc)
# Find related concepts through co-occurrence
related_docs = self.find_related_concepts(doc)
# Expand based on tag similarity
tag_similar = self.find_tag_similar(doc)
expanded_context.extend(linked_docs + related_docs + tag_similar)
return self.rank_by_relevance(expanded_context, seed_documents)
```
### Traversal Strategies
- **Direct Links**: Follow explicit `[[link]]` connections
- **Backlink Expansion**: Include documents that link to the source
- **Tag Clustering**: Group by shared tags and contexts
- **Temporal Proximity**: Include recently accessed related content
## Layer 3: Temporal Context Retrieval
### Purpose
Ensure context is temporally relevant and evolution-aware.
### Implementation
```python
class TemporalRetriever:
def retrieve(self, query: str, base_documents: List[Document]) -> List[Document]:
# Get historical context
historical = self.get_historical_context(query, base_documents)
# Get recent developments
recent = self.get_recent_developments(query)
# Get evolution timeline
timeline = self.build_evolution_timeline(query)
return self.synthesize_temporal_context(historical, recent, timeline)
```
### Temporal Strategies
- **Recency Bias**: Prioritize recent content for fast-moving domains
- **Historical Context**: Include evolution and background for deep understanding
- **Temporal Patterns**: Identify recurring themes and cycles
- **Future Projections**: Include forward-looking content and plans
## Layer 4: Domain Specialization
### Purpose
Apply domain-specific retrieval strategies and context weighting.
### Implementation
```python
class DomainSpecializedRetriever:
def __init__(self):
self.domain_configs = {
'technical': {
'priority_tags': ['#code', '#implementation', '#architecture'],
'context_weight': 0.8,
'recency_bias': 0.6
},
'research': {
'priority_tags': ['#paper', '#methodology', '#results'],
'context_weight': 0.9,
'recency_bias': 0.4
},
'workflow': {
'priority_tags': ['#process', '#automation', '#tool'],
'context_weight': 0.7,
'recency_bias': 0.3
}
}
def retrieve(self, query: str, domain: str, base_docs: List[Document]) -> List[Document]:
config = self.domain_configs[domain]
return self.apply_domain_filtering(base_docs, config)
```
### Domain Strategies
- **Technical**: Prioritize implementation details and code examples
- **Research**: Emphasize methodology, evidence, and citations
- **Workflow**: Focus on processes, tools, and automation
- **Learning**: Include explanations, examples, and practice materials
## Layer 5: Meta-Knowledge Retrieval
### Purpose
Retrieve knowledge about knowledge - patterns, methodologies, and learning insights.
### Implementation
```python
class MetaKnowledgeRetriever:
def retrieve(self, query: str, context_summary: str) -> List[Document]:
# Find patterns and methodologies
patterns = self.find_patterns(query)
# Get learning insights
insights = self.get_learning_insights(query)
# Find similar problems/solutions
analogies = self.find_analogical_cases(query)
return self.synthesize_meta_context(patterns, insights, analogies)
```
### Meta-Knowledge Types
- **Learning Patterns**: How similar concepts were learned
- **Methodology Templates**: Proven approaches and frameworks
- **Problem-Solution Patterns**: Recurring issue resolutions
- **Insight Synthesis**: Higher-level abstractions and connections
## Query Classification and Routing
### Intelligent Query Routing
```python
class QueryRouter:
def route_query(self, query: str, context: Dict) -> List[str]:
query_type = self.classify_query(query, context)
routing_map = {
'factual_lookup': ['semantic', 'domain'],
'conceptual_understanding': ['semantic', 'graph', 'meta'],
'problem_solving': ['semantic', 'graph', 'temporal', 'domain', 'meta'],
'creative_synthesis': ['graph', 'temporal', 'meta'],
'procedural_guidance': ['semantic', 'domain', 'workflow']
}
return routing_map.get(query_type, ['semantic', 'graph'])
```
### Query Types
- **Factual Lookup**: Simple information retrieval
- **Conceptual Understanding**: Deep explanation of concepts
- **Problem Solving**: Complex issue resolution
- **Creative Synthesis**: Novel idea generation
- **Procedural Guidance**: Step-by-step instructions
## Context Synthesis and Ranking
### Multi-Source Context Fusion
```python
class ContextSynthesizer:
def synthesize_context(self, layer_results: Dict[str, List[Document]], query: str) -> str:
# Weight by relevance and recency
weighted_docs = self.weight_documents(layer_results)
# Remove redundancy
deduplicated = self.deduplicate(weighted_docs)
# Organize by theme
organized = self.organize_by_theme(deduplicated)
# Generate coherent context
return self.generate_coherent_context(organized, query)
```
### Ranking Algorithm
1. **Semantic Relevance**: Query-document similarity
2. **Graph Centrality**: Importance in knowledge network
3. **Temporal Freshness**: Recency and relevance
4. **Domain Authority**: Expertise level and source quality
5. **Context Coverage**: Diversity and completeness
## Performance Optimization
### Caching Strategy
- **Query Cache**: Store results for similar queries
- **Document Cache**: Pre-compute embeddings and links
- **Graph Cache**: Cache frequently traversed paths
- **Context Cache**: Store synthesized contexts
### Index Optimization
- **Vector Index**: Optimized for semantic search
- **Link Index**: Fast graph traversal
- **Tag Index**: Multi-dimensional tag queries
- **Temporal Index**: Time-based access patterns
This multi-layer RAG system ensures comprehensive, contextually relevant, and highly accurate knowledge retrieval by combining semantic understanding, graph relationships, temporal awareness, domain expertise, and meta-knowledge synthesis.