Skip to main content
Glama
aegntic

Obsidian Elite RAG MCP Server

architecture.md4.45 kB
# Elite Knowledge Architecture ## Core Design Principles ### 1. Hierarchical Organization (FPEF-Verified) ``` 00-Core/ # Foundational, timeless knowledge 01-Projects/ # Active work with clear outcomes 02-Research/ # Learning and exploration areas 03-Workflows/ # Reusable processes and patterns 04-AI-Paired/ # Claude Code interactions and outputs 05-Resources/ # External references and materials 06-Meta/ # Knowledge about the system itself 07-Archive/ # Historical knowledge (timestamped) 08-Templates/ # Reusable note structures 09-Links/ # External connections and references ``` ### 2. Linking Strategy **Semantic Linking Patterns:** - `[[Concept]]` - Primary relationship - `[[Concept#Subtopic]]` - Granular targeting - `[[Concept|Alias]]` - Alternative naming - `[[Concept]]` - Bidirectional linking - `[[]]` - Placeholder for future connections **Contextual Link Types:** - `→` (Flow): Sequential progression - `⇢` (Suggests): Potential connection - `⇒` (Implies): Logical implication - `⊕` (Combines): Integration point - `⊖` (Contradicts): Tension point ### 3. Tagging System **Hierarchical Tags:** ``` #domain/tech/ai/ml #domain/workflow/automation #domain/research/psychology #status/active/learning #status/archived/complete #priority/critical/urgent #context/work/project-x #method/rag/semantic-search #method/workflow/kanban ``` **Metadata Tags:** ``` #type/concept #type/process #type/resource #type/template #type/question #type/insight ``` ### 4. Note Naming Convention **Format:** `YYYY-MM-DD - Descriptive Title [Context]` **Examples:** - `2024-10-26 - Advanced RAG Techniques [AI/ML]` - `2024-10-26 - Project Phoenix Architecture [Work/Active]` - `2024-10-26 - Learning: Graph Databases [Research]` **Special Prefixes:** - `!` - Action items: `!2024-10-26 - Review Documentation` - `?` - Questions: `?2024-10-26 - How to Optimize Vector Search` - `*` - Important: `*2024-10-26 - Core Architecture Decision` - `+` - Insights: `+2024-10-26 - Connection Between X and Y` ### 5. Content Structure Templates **Standard Note Structure:** ```markdown # Title **Context:** Brief description of this note's purpose and relationships **Last Updated:** 2024-10-26 **Status:** #status/active/learning ## Summary One-sentence summary and key takeaway ## Core Content Main body with structured sections ## Connections - Related: [[Concept A]], [[Concept B]] - Contradicts: [[Concept C]] - Implies: [[Concept D]] ## Actions - [ ] Follow-up on X - [ ] Review Y ## Questions - How does this relate to Z? ## Metadata - **Tags:** #domain/tech #method/rag - **Created:** 2024-10-26 - **Modified:** 2024-10-26 ``` ### 6. Knowledge Graph Optimization **Link Density Principles:** - Each concept should have 3-7 primary connections - Avoid "orphan" notes (no incoming links) - Create "hub" notes for central concepts - Use MOCs (Maps of Content) for topic organization **MOC Structure:** ```markdown # MOC: Artificial Intelligence ## Core Concepts - [[Machine Learning]] - [[Neural Networks]] - [[Natural Language Processing]] ## Applications - [[Computer Vision]] - [[Recommendation Systems]] - [[RAG Systems]] ## Research Areas - [[Transformer Architecture]] - [[Vector Databases]] - [[Knowledge Graphs]] ## Related MOCs - [[MOC: Data Science]] - [[MOC: Software Engineering]] ``` ### 7. Contextual Layering **Layer 1: Core Knowledge** - Fundamental concepts and definitions - Timeless principles and theories - Domain foundations **Layer 2: Applied Knowledge** - Implementation details and examples - Practical applications and case studies - Process documentation **Layer 3: Meta-Knowledge** - Learning journeys and insights - Questions and exploration areas - Personal reflections and synthesis **Layer 4: Connections** - Cross-domain relationships - Pattern recognition - Higher-level abstractions ### 8. Retrieval Optimization **Search-Friendly Content:** - Clear, descriptive titles - Consistent terminology - Keyword optimization - Context-rich summaries **Indexing Strategy:** - Use tags for broad categorization - Use links for specific relationships - Use aliases for terminology variations - Use properties for structured metadata This architecture ensures optimal RAG performance by creating a richly interconnected, hierarchically organized knowledge base that supports multiple retrieval strategies and context synthesis.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/aegntic/aegntic-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server