Skip to main content
Glama
aegntic

Obsidian Elite RAG MCP Server

claude-integration.md10.3 kB
# Claude Code Integration Strategies ## Architecture Overview This integration creates a seamless bidirectional flow between Obsidian knowledge management and Claude Code's AI capabilities, enabling elite knowledge workflows with intelligent automation and context-aware AI assistance. ## Core Integration Components ### 1. Knowledge Ingestion Pipeline #### Real-time Note Processing ```bash # Watch Obsidian vault for changes and process for RAG ./scripts/watch-vault.sh /path/to/vault # Automated metadata extraction and enhancement node scripts/enhance-metadata.js --note "path/to/note.md" # Link discovery and suggestion python scripts/discover-links.py --vault-path /path/to/vault ``` #### Smart Content Enhancement ```javascript // scripts/enhance-metadata.js class MetadataEnhancer { async processNote(notePath) { const content = await fs.readFile(notePath, 'utf8'); // Extract key concepts and entities const concepts = await this.extractConcepts(content); // Suggest connections to existing knowledge const connections = await this.suggestConnections(concepts); // Generate contextual tags const tags = await this.generateTags(content, concepts); // Update note with enhanced metadata await this.updateNoteMetadata(notePath, { concepts, connections, tags }); } } ``` ### 2. Context-Aware Claude Integration #### Query Enhancement ```python # integrations/claude-context.py class ClaudeContextProvider: def __init__(self, vault_path): self.vault_path = vault_path self.rag_engine = RAGEngine(vault_path) def get_context_for_query(self, query: str, user_context: Dict) -> str: # Classify query type query_type = self.classify_query(query) # Retrieve relevant knowledge context_docs = self.rag_engine.retrieve( query=query, context_type=user_context.get('domain', 'general'), query_type=query_type ) # Synthesize context for Claude synthesized_context = self.synthesize_context(context_docs, query) # Add active project/workflow context if user_context.get('active_project'): project_context = self.get_project_context(user_context['active_project']) synthesized_context += f"\n\nCurrent Project Context:\n{project_context}" return synthesized_context ``` #### Claude Command Extensions ```bash # Enhanced Claude Code commands alias claude-with-context='/path/to/claude-context.sh' # Usage examples: claude-with-context "How should I implement this feature?" --project "Phoenix" claude-with-context "What are the best practices for X?" --domain "technical" claude-with-context "Help me understand this concept" --learning-mode ``` ### 3. Bidirectional Knowledge Flow #### Claude → Obsidian Integration ```python # integrations/claude-to-obsidian.py class ClaudeToObsidian: def __init__(self, vault_path): self.vault_path = vault_path def create_note_from_claude_response(self, response: str, context: Dict) -> str: # Generate appropriate note structure note_template = self.generate_note_template(context['query_type']) # Extract key insights and connections insights = self.extract_insights(response) connections = self.identify_potential_links(response) # Create well-structured note note_content = note_template.format( title=context['query'], response=response, insights=insights, connections=connections, timestamp=datetime.now().isoformat() ) # Save to appropriate vault location note_path = self.determine_note_location(context) await self.save_note(note_path, note_content) return note_path ``` #### Obsidian → Claude Enhancement ```javascript // integrations/obsidian-to-claude.js class ObsidianToClaude { async prepareClaudeContext(selectedNotes, query) { // Extract structured information from notes const context = await this.extractNoteContext(selectedNotes); // Identify relationships and patterns const relationships = this.identifyRelationships(selectedNotes); // Generate query-specific context const enhancedContext = { query, knowledgeGraph: context, relationships, userIntent: await this.classifyIntent(query), suggestedActions: this.suggestActions(context, query) }; return enhancedContext; } } ``` ## Integration Patterns ### 1. Knowledge-Paired Development #### Contextual Code Generation ```bash # Get context-aware code suggestions claude-code --context-from-vault --project "Current Project" \ "Generate a REST API endpoint for user management" # Include relevant architectural decisions claude-code --include-notes "Architecture Decisions" \ --include-notes "API Standards" \ "Implement the authentication middleware" ``` #### Learning Integration ```python # scripts/learning-integration.py class LearningIntegration: def track_learning_journey(self, concept: str): # Create learning note if doesn't exist learning_note = self.create_or_get_learning_note(concept) # Suggest related concepts to explore related_concepts = self.rag_engine.find_related_concepts(concept) # Generate personalized learning path learning_path = self.generate_learning_path(concept, related_concepts) # Update progress and insights self.update_learning_progress(learning_note, learning_path) ``` ### 2. Workflow Automation #### Smart Task Management ```javascript // integrations/task-automation.js class TaskAutomation { async processTaskCreation(taskDescription, context) { // Extract requirements and dependencies const requirements = await this.extractRequirements(taskDescription); // Suggest relevant knowledge resources const resources = await this.suggestResources(requirements); // Generate subtasks and timeline const subtasks = this.generateSubtasks(requirements, context); // Create structured project note await this.createProjectNote({ task: taskDescription, requirements, resources, subtasks, context }); } } ``` #### Research Assistant ```python # integrations/research-assistant.py class ResearchAssistant: def conduct_research(self, topic: str, depth: int = 3): # Gather initial knowledge base base_knowledge = self.rag_engine.retrieve(topic, limit=20) # Identify research gaps gaps = self.identify_knowledge_gaps(base_knowledge, topic) # Generate research questions questions = self.generate_research_questions(gaps) # Suggest research methodology methodology = self.suggest_research_methodology(topic, questions) # Create research framework note self.create_research_note(topic, { base_knowledge: base_knowledge, gaps: gaps, questions: questions, methodology: methodology, next_steps: self.generate_next_steps(questions) }) ``` ## Advanced Integration Features ### 1. Predictive Context Loading ```python # integrations/predictive-context.py class PredictiveContext: def __init__(self): self.context_model = self.load_context_prediction_model() def predict_relevant_context(self, current_query: str, user_state: Dict) -> List[str]: # Predict likely next queries predicted_queries = self.context_model.predict_next_queries(current_query, user_state) # Pre-load context for predicted queries relevant_notes = [] for query in predicted_queries: notes = self.rag_engine.retrieve(query, limit=5) relevant_notes.extend(notes) return self.deduplicate_and_rank(relevant_notes) ``` ### 2. Knowledge Graph Visualization ```javascript // integrations/graph-visualizer.js class KnowledgeGraphVisualizer { generateGraphData(vaultPath) { // Extract all links and relationships const graphData = this.extractGraphStructure(vaultPath); // Identify clusters and communities const clusters = this.identifyClusters(graphData); // Calculate importance scores const importance = this.calculateNodeImportance(graphData); // Generate visualization-ready data return this.formatForVisualization(graphData, clusters, importance); } } ``` ### 3. Multi-Modal Knowledge Integration ```python # integrations/multimodal-integration.py class MultiModalIntegration: def process_multimodal_content(self, content_path: str): # Extract text from documents text_content = self.extract_text(content_path) # Analyze images and diagrams visual_content = self.analyze_visuals(content_path) # Transcribe audio/video audio_content = self.transcribe_media(content_path) # Create unified knowledge representation unified_content = this.synthesize_multimodal( text_content, visual_content, audio_content ) # Generate cross-references and connections return self.generate_connections(unified_content) ``` ## Implementation Guidelines ### 1. Performance Optimization - Cache frequently accessed contexts - Use incremental indexing for vault changes - Implement lazy loading for large knowledge bases - Optimize vector database queries ### 2. Privacy and Security - Local-only processing for sensitive information - Encrypted storage for personal knowledge - Selective context sharing with Claude - Audit trail for knowledge access ### 3. User Experience - Seamless integration with existing workflows - Minimal context switching between tools - Intelligent suggestion and automation - Progressive disclosure of complex features This integration framework creates a powerful synergy between Obsidian's knowledge management capabilities and Claude Code's AI assistance, enabling elite productivity and continuous learning workflows.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/aegntic/aegntic-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server