# Automation Framework for Obsidian-Claude Integration
## System Architecture
The automation framework provides intelligent, context-aware automation that bridges Obsidian knowledge management with Claude Code's AI capabilities, creating a self-improving knowledge system.
## Core Automation Components
### 1. Knowledge Processing Pipeline
#### Automated Ingestion and Enhancement
```python
# automation/knowledge-processor.py
class KnowledgeProcessor:
def __init__(self, vault_path, claude_client):
self.vault_path = vault_path
self.claude = claude_client
self.rag_engine = RAGEngine(vault_path)
async def process_new_note(self, note_path: str):
"""Process newly created or modified notes"""
content = await self.read_note(note_path)
# Extract key information
entities = await self.extract_entities(content)
concepts = await self.extract_concepts(content)
relationships = await self.identify_relationships(content)
# Enhance with AI analysis
enhanced_metadata = await self.enhance_with_ai(content, entities, concepts)
# Suggest connections
suggested_links = await self.suggest_connections(concepts, enhanced_metadata)
# Generate contextual tags
smart_tags = await self.generate_smart_tags(content, concepts)
# Update note with enhancements
await self.update_note_metadata(note_path, {
'entities': entities,
'concepts': concepts,
'relationships': relationships,
'suggested_links': suggested_links,
'tags': smart_tags,
'ai_analysis': enhanced_metadata
})
# Trigger related automations
await self.trigger_related_automations(note_path, concepts)
```
#### Continuous Knowledge Graph Updates
```javascript
// automation/graph-updater.js
class KnowledgeGraphUpdater {
async updateGraph(vaultPath) {
// Scan all notes for updates
const updatedNotes = await this.scanForUpdates(vaultPath);
for (const note of updatedNotes) {
// Extract graph relationships
const relationships = await this.extractRelationships(note);
// Update centrality scores
await this.updateCentralityScores(note, relationships);
// Identify clusters and communities
await this.updateClusters(note, relationships);
// Calculate knowledge freshness
await this.updateFreshnessScores(note);
}
// Generate graph insights
const insights = await this.generateGraphInsights();
// Create graph analysis note
await this.createGraphAnalysisNote(insights);
}
}
```
### 2. Intelligent Context Management
#### Predictive Context Loading
```python
# automation/context-predictor.py
class ContextPredictor:
def __init__(self):
self.usage_patterns = self.load_usage_patterns()
self.context_model = self.load_context_model()
async def predict_context(self, current_action: str, user_state: Dict) -> List[str]:
# Analyze current action pattern
action_pattern = self.analyze_action_pattern(current_action)
# Predict likely next actions
next_actions = self.context_model.predict_next_actions(action_pattern, user_state)
# Pre-load relevant contexts
relevant_contexts = []
for action in next_actions:
context = await self.get_context_for_action(action)
relevant_contexts.extend(context)
# Rank and filter contexts
return self.rank_contexts(relevant_contexts, current_action)
```
#### Dynamic Context Optimization
```javascript
// automation/context-optimizer.js
class ContextOptimizer {
async optimizeContext(query, currentContext, userState) {
// Analyze query complexity and domain
const queryAnalysis = await this.analyzeQuery(query);
// Determine optimal context size
const optimalSize = this.calculateOptimalContextSize(queryAnalysis);
// Select most relevant context pieces
const selectedContext = await this.selectRelevantContext(
currentContext,
query,
optimalSize
);
// Optimize context organization
const optimizedContext = await this.optimizeContextOrganization(
selectedContext,
query
);
return optimizedContext;
}
}
```
### 3. Automated Learning and Adaptation
#### Personalized Learning Automation
```python
# automation/learning-automator.py
class LearningAutomator:
def __init__(self):
self.learning_model = self.load_learning_model()
self.spaced_repetition = SpacedRepetitionSystem()
async def automate_learning(self, user_activity: Dict):
# Identify learning opportunities
learning_opportunities = await self.identify_learning_opportunities(user_activity)
# Generate personalized learning path
learning_path = await self.generate_learning_path(learning_opportunities)
# Create learning materials
for topic in learning_path:
await self.create_learning_materials(topic)
# Schedule review sessions
await self.schedule_review_sessions(learning_path)
# Track progress and adapt
await self.setup_progress_tracking(learning_path)
```
#### Knowledge Gap Detection and Filling
```javascript
// automation/knowledge-gap-filler.js
class KnowledgeGapFiller {
async detectAndFillGaps(knowledgeBase) {
// Analyze knowledge graph for gaps
const gaps = await this.identifyKnowledgeGaps(knowledgeBase);
for (const gap of gaps) {
// Prioritize gaps by importance
const priority = await this.calculateGapPriority(gap);
if (priority > THRESHOLD) {
// Generate research plan
const researchPlan = await this.generateResearchPlan(gap);
// Execute automated research
const researchResults = await self.executeResearch(researchPlan);
// Create knowledge from research
await this.createKnowledgeFromResearch(gap, researchResults);
// Integrate new knowledge
await this.integrateNewKnowledge(researchResults);
}
}
}
}
```
## Advanced Automation Features
### 1. Multi-Modal Content Processing
```python
# automation/multimodal-processor.py
class MultiModalProcessor:
async process_multimodal_content(self, content_path: str):
# Detect content type
content_type = await self.detect_content_type(content_path)
# Extract information based on type
if content_type == 'document':
extracted = await self.process_document(content_path)
elif content_type == 'image':
extracted = await self.process_image(content_path)
elif content_type == 'audio':
extracted = await self.process_audio(content_path)
elif content_type == 'video':
extracted = await self.process_video(content_path)
# Generate unified knowledge representation
unified_knowledge = await this.create_unified_representation(extracted)
# Create structured note
await self.create_structured_note(content_path, unified_knowledge)
# Identify connections to existing knowledge
connections = await self.find_connections(unified_knowledge)
# Update knowledge graph
await self.update_knowledge_graph(unified_knowledge, connections)
```
### 2. Workflow Orchestration
```python
# automation/workflow-orchestrator.py
class WorkflowOrchestrator:
def __init__(self):
self.active_workflows = {}
self.workflow_triggers = self.load_workflow_triggers()
async def orchestrate_workflow(self, workflow_type: str, context: Dict):
# Create workflow instance
workflow = await self.create_workflow(workflow_type, context)
# Execute workflow steps
results = []
for step in workflow.steps:
step_result = await self.execute_workflow_step(step, context)
results.append(step_result)
# Update context for next step
context = await self.update_context(context, step_result)
# Check for workflow interruptions
if await self.should_interrupt_workflow(step_result):
break
# Finalize workflow
final_result = await self.finalize_workflow(workflow, results)
# Create workflow result note
await self.create_workflow_note(workflow_type, final_result)
return final_result
```
### 3. Intelligent Assistant Automation
```python
# automation/intelligent-assistant.py
class IntelligentAssistant:
async def provide_intelligent_assistance(self, user_query: str, context: Dict):
# Understand user intent
intent = await self.understand_intent(user_query, context)
# Select appropriate assistance strategy
strategy = await self.select_assistance_strategy(intent)
# Execute assistance strategy
if strategy == 'knowledge_retrieval':
assistance = await self.provide_knowledge_assistance(user_query, context)
elif strategy == 'workflow_guidance':
assistance = await self.provide_workflow_guidance(user_query, context)
elif strategy == 'learning_support':
assistance = await self.provide_learning_support(user_query, context)
elif strategy == 'creative_synthesis':
assistance = await self.provide_creative_synthesis(user_query, context)
# Personalize assistance
personalized_assistance = await self.personalize_assistance(
assistance, context
)
# Learn from interaction
await self.learn_from_interaction(user_query, personalized_assistance, context)
return personalized_assistance
```
## Automation Scheduling and Triggers
### 1. Event-Driven Automation
```python
# automation/event-handler.py
class AutomationEventHandler:
def __init__(self):
self.event_handlers = self.load_event_handlers()
self.event_queue = asyncio.Queue()
async def handle_event(self, event_type: str, event_data: Dict):
# Queue event for processing
await self.event_queue.put((event_type, event_data))
async def process_events(self):
while True:
event_type, event_data = await self.event_queue.get()
# Find appropriate handlers
handlers = self.event_handlers.get(event_type, [])
# Execute all handlers
for handler in handlers:
try:
await handler(event_data)
except Exception as e:
await self.handle_handler_error(handler, event_data, e)
```
### 2. Scheduled Automation
```python
# automation/scheduler.py
class AutomationScheduler:
def __init__(self):
self.scheduled_tasks = self.load_scheduled_tasks()
self.scheduler = AsyncIOScheduler()
def setup_scheduled_tasks(self):
# Daily knowledge synthesis
self.scheduler.add_job(
self.daily_knowledge_synthesis,
'cron',
hour=20,
minute=0
)
# Weekly graph analysis
self.scheduler.add_job(
self.weekly_graph_analysis,
'cron',
day_of_week=0,
hour=10,
minute=0
)
# Monthly learning review
self.scheduler.add_job(
self.monthly_learning_review,
'cron',
day=1,
hour=9,
minute=0
)
# Start scheduler
self.scheduler.start()
```
## Performance and Optimization
### 1. Caching and Indexing
```python
# automation/cache-manager.py
class CacheManager:
def __init__(self):
self.context_cache = LRUCache(maxsize=1000)
self.embedding_cache = LRUCache(maxsize=5000)
self.graph_cache = LRUCache(maxsize=2000)
async def get_cached_context(self, query_hash: str) -> Optional[str]:
return self.context_cache.get(query_hash)
async def cache_context(self, query_hash: str, context: str):
self.context_cache[query_hash] = context
```
### 2. Performance Monitoring
```python
# automation/performance-monitor.py
class PerformanceMonitor:
def __init__(self):
self.metrics = defaultdict(list)
async def track_automation_performance(self, automation_type: str,
execution_time: float,
success: bool):
self.metrics[automation_type].append({
'timestamp': datetime.now(),
'execution_time': execution_time,
'success': success
})
# Analyze performance trends
await self.analyze_performance_trends(automation_type)
```
## Configuration and Customization
### 1. Automation Configuration
```yaml
# config/automation-config.yaml
automation:
knowledge_processing:
enabled: true
interval: 300 # 5 minutes
max_batch_size: 10
context_prediction:
enabled: true
model_path: "models/context_predictor.pkl"
max_context_items: 50
learning_automation:
enabled: true
review_frequency: daily
max_new_topics_per_day: 3
performance_monitoring:
enabled: true
log_level: INFO
metrics_retention_days: 30
```
### 2. Custom Automation Rules
```python
# automation/custom-rules.py
class CustomAutomationRules:
def __init__(self):
self.rules = self.load_custom_rules()
async def apply_custom_rules(self, event_data: Dict):
for rule in self.rules:
if await self.evaluate_rule_condition(rule, event_data):
await self.execute_rule_action(rule, event_data)
```
This automation framework creates a self-improving, intelligent knowledge management system that continuously learns from user interactions and optimizes itself for maximum productivity and knowledge retention.