Skip to main content
Glama
aegntic

Obsidian Elite RAG MCP Server

automation.md14.4 kB
# Automation Framework for Obsidian-Claude Integration ## System Architecture The automation framework provides intelligent, context-aware automation that bridges Obsidian knowledge management with Claude Code's AI capabilities, creating a self-improving knowledge system. ## Core Automation Components ### 1. Knowledge Processing Pipeline #### Automated Ingestion and Enhancement ```python # automation/knowledge-processor.py class KnowledgeProcessor: def __init__(self, vault_path, claude_client): self.vault_path = vault_path self.claude = claude_client self.rag_engine = RAGEngine(vault_path) async def process_new_note(self, note_path: str): """Process newly created or modified notes""" content = await self.read_note(note_path) # Extract key information entities = await self.extract_entities(content) concepts = await self.extract_concepts(content) relationships = await self.identify_relationships(content) # Enhance with AI analysis enhanced_metadata = await self.enhance_with_ai(content, entities, concepts) # Suggest connections suggested_links = await self.suggest_connections(concepts, enhanced_metadata) # Generate contextual tags smart_tags = await self.generate_smart_tags(content, concepts) # Update note with enhancements await self.update_note_metadata(note_path, { 'entities': entities, 'concepts': concepts, 'relationships': relationships, 'suggested_links': suggested_links, 'tags': smart_tags, 'ai_analysis': enhanced_metadata }) # Trigger related automations await self.trigger_related_automations(note_path, concepts) ``` #### Continuous Knowledge Graph Updates ```javascript // automation/graph-updater.js class KnowledgeGraphUpdater { async updateGraph(vaultPath) { // Scan all notes for updates const updatedNotes = await this.scanForUpdates(vaultPath); for (const note of updatedNotes) { // Extract graph relationships const relationships = await this.extractRelationships(note); // Update centrality scores await this.updateCentralityScores(note, relationships); // Identify clusters and communities await this.updateClusters(note, relationships); // Calculate knowledge freshness await this.updateFreshnessScores(note); } // Generate graph insights const insights = await this.generateGraphInsights(); // Create graph analysis note await this.createGraphAnalysisNote(insights); } } ``` ### 2. Intelligent Context Management #### Predictive Context Loading ```python # automation/context-predictor.py class ContextPredictor: def __init__(self): self.usage_patterns = self.load_usage_patterns() self.context_model = self.load_context_model() async def predict_context(self, current_action: str, user_state: Dict) -> List[str]: # Analyze current action pattern action_pattern = self.analyze_action_pattern(current_action) # Predict likely next actions next_actions = self.context_model.predict_next_actions(action_pattern, user_state) # Pre-load relevant contexts relevant_contexts = [] for action in next_actions: context = await self.get_context_for_action(action) relevant_contexts.extend(context) # Rank and filter contexts return self.rank_contexts(relevant_contexts, current_action) ``` #### Dynamic Context Optimization ```javascript // automation/context-optimizer.js class ContextOptimizer { async optimizeContext(query, currentContext, userState) { // Analyze query complexity and domain const queryAnalysis = await this.analyzeQuery(query); // Determine optimal context size const optimalSize = this.calculateOptimalContextSize(queryAnalysis); // Select most relevant context pieces const selectedContext = await this.selectRelevantContext( currentContext, query, optimalSize ); // Optimize context organization const optimizedContext = await this.optimizeContextOrganization( selectedContext, query ); return optimizedContext; } } ``` ### 3. Automated Learning and Adaptation #### Personalized Learning Automation ```python # automation/learning-automator.py class LearningAutomator: def __init__(self): self.learning_model = self.load_learning_model() self.spaced_repetition = SpacedRepetitionSystem() async def automate_learning(self, user_activity: Dict): # Identify learning opportunities learning_opportunities = await self.identify_learning_opportunities(user_activity) # Generate personalized learning path learning_path = await self.generate_learning_path(learning_opportunities) # Create learning materials for topic in learning_path: await self.create_learning_materials(topic) # Schedule review sessions await self.schedule_review_sessions(learning_path) # Track progress and adapt await self.setup_progress_tracking(learning_path) ``` #### Knowledge Gap Detection and Filling ```javascript // automation/knowledge-gap-filler.js class KnowledgeGapFiller { async detectAndFillGaps(knowledgeBase) { // Analyze knowledge graph for gaps const gaps = await this.identifyKnowledgeGaps(knowledgeBase); for (const gap of gaps) { // Prioritize gaps by importance const priority = await this.calculateGapPriority(gap); if (priority > THRESHOLD) { // Generate research plan const researchPlan = await this.generateResearchPlan(gap); // Execute automated research const researchResults = await self.executeResearch(researchPlan); // Create knowledge from research await this.createKnowledgeFromResearch(gap, researchResults); // Integrate new knowledge await this.integrateNewKnowledge(researchResults); } } } } ``` ## Advanced Automation Features ### 1. Multi-Modal Content Processing ```python # automation/multimodal-processor.py class MultiModalProcessor: async process_multimodal_content(self, content_path: str): # Detect content type content_type = await self.detect_content_type(content_path) # Extract information based on type if content_type == 'document': extracted = await self.process_document(content_path) elif content_type == 'image': extracted = await self.process_image(content_path) elif content_type == 'audio': extracted = await self.process_audio(content_path) elif content_type == 'video': extracted = await self.process_video(content_path) # Generate unified knowledge representation unified_knowledge = await this.create_unified_representation(extracted) # Create structured note await self.create_structured_note(content_path, unified_knowledge) # Identify connections to existing knowledge connections = await self.find_connections(unified_knowledge) # Update knowledge graph await self.update_knowledge_graph(unified_knowledge, connections) ``` ### 2. Workflow Orchestration ```python # automation/workflow-orchestrator.py class WorkflowOrchestrator: def __init__(self): self.active_workflows = {} self.workflow_triggers = self.load_workflow_triggers() async def orchestrate_workflow(self, workflow_type: str, context: Dict): # Create workflow instance workflow = await self.create_workflow(workflow_type, context) # Execute workflow steps results = [] for step in workflow.steps: step_result = await self.execute_workflow_step(step, context) results.append(step_result) # Update context for next step context = await self.update_context(context, step_result) # Check for workflow interruptions if await self.should_interrupt_workflow(step_result): break # Finalize workflow final_result = await self.finalize_workflow(workflow, results) # Create workflow result note await self.create_workflow_note(workflow_type, final_result) return final_result ``` ### 3. Intelligent Assistant Automation ```python # automation/intelligent-assistant.py class IntelligentAssistant: async def provide_intelligent_assistance(self, user_query: str, context: Dict): # Understand user intent intent = await self.understand_intent(user_query, context) # Select appropriate assistance strategy strategy = await self.select_assistance_strategy(intent) # Execute assistance strategy if strategy == 'knowledge_retrieval': assistance = await self.provide_knowledge_assistance(user_query, context) elif strategy == 'workflow_guidance': assistance = await self.provide_workflow_guidance(user_query, context) elif strategy == 'learning_support': assistance = await self.provide_learning_support(user_query, context) elif strategy == 'creative_synthesis': assistance = await self.provide_creative_synthesis(user_query, context) # Personalize assistance personalized_assistance = await self.personalize_assistance( assistance, context ) # Learn from interaction await self.learn_from_interaction(user_query, personalized_assistance, context) return personalized_assistance ``` ## Automation Scheduling and Triggers ### 1. Event-Driven Automation ```python # automation/event-handler.py class AutomationEventHandler: def __init__(self): self.event_handlers = self.load_event_handlers() self.event_queue = asyncio.Queue() async def handle_event(self, event_type: str, event_data: Dict): # Queue event for processing await self.event_queue.put((event_type, event_data)) async def process_events(self): while True: event_type, event_data = await self.event_queue.get() # Find appropriate handlers handlers = self.event_handlers.get(event_type, []) # Execute all handlers for handler in handlers: try: await handler(event_data) except Exception as e: await self.handle_handler_error(handler, event_data, e) ``` ### 2. Scheduled Automation ```python # automation/scheduler.py class AutomationScheduler: def __init__(self): self.scheduled_tasks = self.load_scheduled_tasks() self.scheduler = AsyncIOScheduler() def setup_scheduled_tasks(self): # Daily knowledge synthesis self.scheduler.add_job( self.daily_knowledge_synthesis, 'cron', hour=20, minute=0 ) # Weekly graph analysis self.scheduler.add_job( self.weekly_graph_analysis, 'cron', day_of_week=0, hour=10, minute=0 ) # Monthly learning review self.scheduler.add_job( self.monthly_learning_review, 'cron', day=1, hour=9, minute=0 ) # Start scheduler self.scheduler.start() ``` ## Performance and Optimization ### 1. Caching and Indexing ```python # automation/cache-manager.py class CacheManager: def __init__(self): self.context_cache = LRUCache(maxsize=1000) self.embedding_cache = LRUCache(maxsize=5000) self.graph_cache = LRUCache(maxsize=2000) async def get_cached_context(self, query_hash: str) -> Optional[str]: return self.context_cache.get(query_hash) async def cache_context(self, query_hash: str, context: str): self.context_cache[query_hash] = context ``` ### 2. Performance Monitoring ```python # automation/performance-monitor.py class PerformanceMonitor: def __init__(self): self.metrics = defaultdict(list) async def track_automation_performance(self, automation_type: str, execution_time: float, success: bool): self.metrics[automation_type].append({ 'timestamp': datetime.now(), 'execution_time': execution_time, 'success': success }) # Analyze performance trends await self.analyze_performance_trends(automation_type) ``` ## Configuration and Customization ### 1. Automation Configuration ```yaml # config/automation-config.yaml automation: knowledge_processing: enabled: true interval: 300 # 5 minutes max_batch_size: 10 context_prediction: enabled: true model_path: "models/context_predictor.pkl" max_context_items: 50 learning_automation: enabled: true review_frequency: daily max_new_topics_per_day: 3 performance_monitoring: enabled: true log_level: INFO metrics_retention_days: 30 ``` ### 2. Custom Automation Rules ```python # automation/custom-rules.py class CustomAutomationRules: def __init__(self): self.rules = self.load_custom_rules() async def apply_custom_rules(self, event_data: Dict): for rule in self.rules: if await self.evaluate_rule_condition(rule, event_data): await self.execute_rule_action(rule, event_data) ``` This automation framework creates a self-improving, intelligent knowledge management system that continuously learns from user interactions and optimizes itself for maximum productivity and knowledge retention.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/aegntic/aegntic-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server