Skip to main content
Glama

MCP Dataset Onboarding Server

by Magenta91
processor_dashboard.py•7.83 kB
#!/usr/bin/env python3 """ Dashboard for monitoring the Auto Dataset Processor """ import os import json import time from datetime import datetime, timedelta from typing import Dict, Any from dotenv import load_dotenv from utils import get_drive_service, list_files_in_folder load_dotenv() class ProcessorDashboard: def __init__(self, processed_files_log: str = "processed_files.json"): self.processed_files_log = processed_files_log self.server_folder_id = os.getenv('MCP_SERVER_FOLDER_ID') def _load_processed_files(self) -> Dict[str, Any]: """Load processed files log.""" if os.path.exists(self.processed_files_log): try: with open(self.processed_files_log, 'r') as f: return json.load(f) except: pass return {} def _get_folder_stats(self) -> Dict[str, Any]: """Get statistics about the monitored folder.""" try: drive_service = get_drive_service() all_files = list_files_in_folder(drive_service, self.server_folder_id) total_files = len(all_files) supported_files = len([f for f in all_files if f['name'].lower().endswith(('.csv', '.xlsx', '.xls'))]) return { "total_files": total_files, "supported_files": supported_files, "unsupported_files": total_files - supported_files } except Exception as e: return {"error": str(e)} def show_status(self): """Show current processor status.""" print("šŸ“Š MCP Auto Processor Dashboard") print("=" * 50) # Load processed files processed_files = self._load_processed_files() # Get folder stats folder_stats = self._get_folder_stats() # Basic stats print(f"šŸ“ Monitored Folder: {self.server_folder_id}") print(f"šŸ“‹ Processed Files: {len(processed_files)}") if "error" not in folder_stats: print(f"šŸ“„ Total Files in Folder: {folder_stats['total_files']}") print(f"āœ… Supported Files: {folder_stats['supported_files']}") print(f"āŒ Unsupported Files: {folder_stats['unsupported_files']}") # Calculate pending files pending = folder_stats['supported_files'] - len(processed_files) print(f"ā³ Pending Files: {max(0, pending)}") else: print(f"āŒ Error accessing folder: {folder_stats['error']}") print() # Recent activity if processed_files: print("šŸ• Recent Activity:") print("-" * 30) # Sort by processed time recent_files = sorted( processed_files.items(), key=lambda x: x[1].get('processed_at', ''), reverse=True )[:5] # Last 5 files for file_id, info in recent_files: try: processed_time = datetime.fromisoformat(info['processed_at']) time_ago = datetime.now() - processed_time if time_ago.days > 0: time_str = f"{time_ago.days}d ago" elif time_ago.seconds > 3600: time_str = f"{time_ago.seconds // 3600}h ago" elif time_ago.seconds > 60: time_str = f"{time_ago.seconds // 60}m ago" else: time_str = "just now" print(f" šŸ“„ {info['filename'][:40]:<40} {time_str}") print(f" šŸ“Š {info['row_count']:,} rows Ɨ {info['column_count']} cols, {info['dq_rules_count']} rules") except Exception as e: print(f" āŒ Error displaying {info.get('filename', 'unknown')}: {e}") print() else: print("šŸ“­ No files processed yet") print() def show_detailed_stats(self): """Show detailed statistics.""" processed_files = self._load_processed_files() if not processed_files: print("šŸ“­ No processed files to analyze") return print("šŸ“ˆ Detailed Statistics") print("=" * 30) # Calculate stats total_rows = sum(info.get('row_count', 0) for info in processed_files.values()) total_columns = sum(info.get('column_count', 0) for info in processed_files.values()) total_rules = sum(info.get('dq_rules_count', 0) for info in processed_files.values()) avg_rows = total_rows / len(processed_files) if processed_files else 0 avg_columns = total_columns / len(processed_files) if processed_files else 0 avg_rules = total_rules / len(processed_files) if processed_files else 0 print(f"šŸ“Š Total Datasets: {len(processed_files)}") print(f"šŸ“Š Total Rows: {total_rows:,}") print(f"šŸ“Š Total Columns: {total_columns:,}") print(f"šŸ“Š Total DQ Rules: {total_rules:,}") print() print(f"šŸ“Š Average Rows per Dataset: {avg_rows:,.1f}") print(f"šŸ“Š Average Columns per Dataset: {avg_columns:.1f}") print(f"šŸ“Š Average DQ Rules per Dataset: {avg_rules:.1f}") print() # Processing timeline print("šŸ“… Processing Timeline (Last 7 days):") print("-" * 40) # Group by date daily_counts = {} for info in processed_files.values(): try: processed_date = datetime.fromisoformat(info['processed_at']).date() daily_counts[processed_date] = daily_counts.get(processed_date, 0) + 1 except: continue # Show last 7 days for i in range(6, -1, -1): date = (datetime.now() - timedelta(days=i)).date() count = daily_counts.get(date, 0) bar = "ā–ˆ" * count if count > 0 else "ā–‘" print(f" {date} │ {bar} {count}") print() def monitor_live(self, refresh_interval: int = 10): """Live monitoring with auto-refresh.""" print("šŸ”“ Live Monitoring Mode (Press Ctrl+C to exit)") print(f"šŸ”„ Refreshing every {refresh_interval} seconds") print() try: while True: # Clear screen (works on most terminals) os.system('cls' if os.name == 'nt' else 'clear') print(f"šŸ• Last Updated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}") print() self.show_status() print(f"šŸ”„ Next refresh in {refresh_interval} seconds... (Ctrl+C to exit)") time.sleep(refresh_interval) except KeyboardInterrupt: print("\nšŸ‘‹ Live monitoring stopped") def main(): import argparse parser = argparse.ArgumentParser(description="MCP Processor Dashboard") parser.add_argument('--live', action='store_true', help='Live monitoring mode') parser.add_argument('--stats', action='store_true', help='Show detailed statistics') parser.add_argument('--refresh', type=int, default=10, help='Refresh interval for live mode') args = parser.parse_args() dashboard = ProcessorDashboard() if args.live: dashboard.monitor_live(args.refresh) elif args.stats: dashboard.show_detailed_stats() else: dashboard.show_status() if __name__ == "__main__": main()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Magenta91/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server