Skip to main content
Glama

MCP Dataset Onboarding Server

by Magenta91
local_test.py•2.3 kB
#!/usr/bin/env python3 """ Local test script to process the dataset without Google Drive upload limitations. This will download the file, process it, and save artifacts locally in organized folders. """ import os from dotenv import load_dotenv from dataset_processor import process_dataset_with_organization, list_processed_datasets # Load environment variables load_dotenv() def display_processing_summary(result): """Display a comprehensive processing summary.""" if result["status"] != "success": return metadata = result["metadata"] dq_rules = result["dq_rules"] print("\n" + "="*50) print("PROCESSING SUMMARY") print("="*50) print(f"Dataset: {metadata['filename']}") print(f"Rows: {metadata['row_count']:,}") print(f"Columns: {metadata['column_count']}") print(f"DQ Rules: {len(dq_rules)}") print("\nColumn Summary:") for col in metadata['columns']: print(f" - {col['name']}: {col['data_type']} ({col['null_percentage']:.1f}% null)") print("\nData Quality Rules:") for rule in dq_rules: print(f" - {rule['rule_type'].upper()}: {rule['description']} [{rule['severity']}]") if __name__ == "__main__": # Test with your file ID file_id = "14n9OxaOzOOWuE81IC0J2VzfKvbJH3cYp" print("šŸš€ MCP Dataset Onboarding - Local Processing") print("=" * 50) # Process the dataset result = process_dataset_with_organization(file_id) if result["status"] == "success": print(f"\nāœ… Processing completed successfully!") print(f"šŸ“ Output folder: {result['output_folder']}") print(f"šŸ“„ Files created: {len(result['files_created'])} files") for file_path in result['files_created']: print(f" - {os.path.basename(file_path)}") # Display processing summary display_processing_summary(result) # List all processed datasets print(f"\nšŸ“Š All Processed Datasets:") datasets = list_processed_datasets() for i, dataset in enumerate(datasets, 1): print(f" {i}. {dataset['dataset_name']} ({dataset['row_count']:,} rows, {dataset['column_count']} cols)") else: print(f"\nāŒ Processing failed: {result['message']}")

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Magenta91/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server