Skip to main content
Glama

MCP Dataset Onboarding Server

by Magenta91
auto_config.py1.62 kB
#!/usr/bin/env python3 """ Configuration and setup for the Auto Dataset Processor """ import os from dotenv import load_dotenv load_dotenv() # Auto Processor Configuration AUTO_PROCESSOR_CONFIG = { # How often to check for new files (in seconds) "check_interval": 30, # Minimum age of file before processing (to avoid processing while uploading) "min_file_age_minutes": 1, # Supported file extensions "supported_extensions": ['.csv', '.xlsx', '.xls'], # Log file for tracking processed files "processed_files_log": "processed_files.json", # Output folder for organized datasets "output_folder": "processed_datasets", # Enable detailed logging "verbose_logging": True, # Auto-retry failed files after this many seconds "retry_failed_after": 3600, # 1 hour # Maximum number of files to process in one cycle "max_files_per_cycle": 5 } def get_config(): """Get the current configuration.""" return AUTO_PROCESSOR_CONFIG.copy() def update_config(**kwargs): """Update configuration values.""" for key, value in kwargs.items(): if key in AUTO_PROCESSOR_CONFIG: AUTO_PROCESSOR_CONFIG[key] = value print(f"✅ Updated {key} = {value}") else: print(f"❌ Unknown config key: {key}") def print_config(): """Print current configuration.""" print("⚙️ Auto Processor Configuration:") print("=" * 40) for key, value in AUTO_PROCESSOR_CONFIG.items(): print(f"{key:25}: {value}") print() if __name__ == "__main__": print_config()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Magenta91/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server