Skip to main content
Glama

MCP Dataset Onboarding Server

by Magenta91
demo_auto_processor.py•1.51 kB
#!/usr/bin/env python3 """ Demo script to showcase the Auto Dataset Processor """ import time from auto_processor import AutoDatasetProcessor from processor_dashboard import ProcessorDashboard def demo(): print("šŸŽ¬ MCP Auto Dataset Processor Demo") print("=" * 50) print("This demo shows how the auto-processor works:") print("1. Monitors your Google Drive folder") print("2. Detects new files automatically") print("3. Processes them without manual intervention") print("4. Organizes all outputs neatly") print() # Show current status print("šŸ“Š Current Status:") dashboard = ProcessorDashboard() dashboard.show_status() print("šŸ” Running a single check cycle to demonstrate...") # Create processor and run once processor = AutoDatasetProcessor() processed_count = processor.run_once() if processed_count > 0: print(f"✨ Processed {processed_count} file(s)!") print("\nšŸ“Š Updated Status:") dashboard.show_status() else: print("šŸ“­ No new files found to process") print("\nšŸ’” To test the auto-processor:") print(" 1. Upload a CSV or Excel file to your MCP_server Google Drive folder") print(" 2. Run: python start_auto_processor.py") print(" 3. Watch it process automatically!") print("\nšŸš€ Ready to start automatic monitoring?") print(" Run: python start_auto_processor.py") if __name__ == "__main__": demo()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Magenta91/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server