#!/usr/bin/env python3
"""
Demo script to showcase the Auto Dataset Processor
"""
import time
from auto_processor import AutoDatasetProcessor
from processor_dashboard import ProcessorDashboard
def demo():
print("š¬ MCP Auto Dataset Processor Demo")
print("=" * 50)
print("This demo shows how the auto-processor works:")
print("1. Monitors your Google Drive folder")
print("2. Detects new files automatically")
print("3. Processes them without manual intervention")
print("4. Organizes all outputs neatly")
print()
# Show current status
print("š Current Status:")
dashboard = ProcessorDashboard()
dashboard.show_status()
print("š Running a single check cycle to demonstrate...")
# Create processor and run once
processor = AutoDatasetProcessor()
processed_count = processor.run_once()
if processed_count > 0:
print(f"⨠Processed {processed_count} file(s)!")
print("\nš Updated Status:")
dashboard.show_status()
else:
print("š No new files found to process")
print("\nš” To test the auto-processor:")
print(" 1. Upload a CSV or Excel file to your MCP_server Google Drive folder")
print(" 2. Run: python start_auto_processor.py")
print(" 3. Watch it process automatically!")
print("\nš Ready to start automatic monitoring?")
print(" Run: python start_auto_processor.py")
if __name__ == "__main__":
demo()
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/Magenta91/MCP'
If you have feedback or need assistance with the MCP directory API, please join our Discord server