Skip to main content
Glama

MCP Server for Qdrant

by Jimmy974
test_embeddings.py1.49 kB
import pytest from mcp_server_qdrant.embeddings.factory import create_embedding_provider from mcp_server_qdrant.embeddings.types import EmbeddingProviderType from mcp_server_qdrant.settings import EmbeddingProviderSettings @pytest.mark.asyncio async def test_fastembed_provider(): """Test the FastEmbed provider.""" # Create a settings object with the FastEmbed provider settings = EmbeddingProviderSettings( provider_type=EmbeddingProviderType.FASTEMBED, model_name="sentence-transformers/all-MiniLM-L6-v2", ) # Create the embedding provider provider = create_embedding_provider(settings) # Test embedding a query query = "This is a test query" embedding = await provider.embed_query(query) # Check that the embedding is a list of floats assert isinstance(embedding, list) assert all(isinstance(x, float) for x in embedding) # Test embedding documents documents = ["This is document 1", "This is document 2"] embeddings = await provider.embed_documents(documents) # Check that the embeddings are a list of lists of floats assert isinstance(embeddings, list) assert len(embeddings) == len(documents) assert all(isinstance(x, list) for x in embeddings) assert all(all(isinstance(y, float) for y in x) for x in embeddings) # Check that the vector name is as expected vector_name = provider.get_vector_name() assert vector_name.startswith("fast-")

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Jimmy974/mcp-server-qdrant'

If you have feedback or need assistance with the MCP directory API, please join our Discord server