test_thinkdeep_validation.py•43 kB
#!/usr/bin/env python3
"""
ThinkDeep Tool Validation Test
Tests the thinkdeep tool's capabilities using the new workflow architecture.
This validates that the workflow-based deep thinking implementation provides
step-by-step thinking with expert analysis integration.
"""
import json
from typing import Optional
from .conversation_base_test import ConversationBaseTest
class ThinkDeepWorkflowValidationTest(ConversationBaseTest):
"""Test thinkdeep tool with new workflow architecture"""
@property
def test_name(self) -> str:
return "thinkdeep_validation"
@property
def test_description(self) -> str:
return "ThinkDeep workflow tool validation with new workflow architecture"
def run_test(self) -> bool:
"""Test thinkdeep tool capabilities"""
# Set up the test environment
self.setUp()
try:
self.logger.info("Test: ThinkDeepWorkflow tool validation (new architecture)")
# Create test files for thinking context
self._create_thinking_context()
# Test 1: Single thinking session with multiple steps
if not self._test_single_thinking_session():
return False
# Test 2: Thinking with backtracking
if not self._test_thinking_with_backtracking():
return False
# Test 3: Complete thinking with expert analysis
if not self._test_complete_thinking_with_analysis():
return False
# Test 4: Certain confidence behavior
if not self._test_certain_confidence():
return False
# Test 5: Context-aware file embedding
if not self._test_context_aware_file_embedding():
return False
# Test 6: Multi-step file context optimization
if not self._test_multi_step_file_context():
return False
self.logger.info(" ✅ All thinkdeep validation tests passed")
return True
except Exception as e:
self.logger.error(f"ThinkDeep validation test failed: {e}")
return False
def _create_thinking_context(self):
"""Create test files for deep thinking context"""
# Create architecture document
architecture_doc = """# Microservices Architecture Design
## Current System
- Monolithic application with 500k LOC
- Single PostgreSQL database
- Peak load: 10k requests/minute
- Team size: 25 developers
- Deployment: Manual, 2-week cycles
## Proposed Migration to Microservices
### Benefits
- Independent deployments
- Technology diversity
- Team autonomy
- Scalability improvements
### Challenges
- Data consistency
- Network latency
- Operational complexity
- Transaction management
### Key Considerations
- Service boundaries
- Data migration strategy
- Communication patterns
- Monitoring and observability
"""
# Create requirements document
requirements_doc = """# Migration Requirements
## Business Goals
- Reduce deployment cycle from 2 weeks to daily
- Support 50k requests/minute by Q4
- Enable A/B testing capabilities
- Improve system resilience
## Technical Constraints
- Zero downtime migration
- Maintain data consistency
- Budget: $200k for infrastructure
- Timeline: 6 months
- Existing team skills: Java, Spring Boot
## Success Metrics
- Deployment frequency: 10x improvement
- System availability: 99.9%
- Response time: <200ms p95
- Developer productivity: 30% improvement
"""
# Create performance analysis
performance_analysis = """# Current Performance Analysis
## Database Bottlenecks
- Connection pool exhaustion during peak hours
- Complex joins affecting query performance
- Lock contention on user_sessions table
- Read replica lag causing data inconsistency
## Application Issues
- Memory leaks in background processing
- Thread pool starvation
- Cache invalidation storms
- Session clustering problems
## Infrastructure Limits
- Single server deployment
- Manual scaling processes
- Limited monitoring capabilities
- No circuit breaker patterns
"""
# Create test files
self.architecture_file = self.create_additional_test_file("architecture_design.md", architecture_doc)
self.requirements_file = self.create_additional_test_file("migration_requirements.md", requirements_doc)
self.performance_file = self.create_additional_test_file("performance_analysis.md", performance_analysis)
self.logger.info(" ✅ Created thinking context files:")
self.logger.info(f" - {self.architecture_file}")
self.logger.info(f" - {self.requirements_file}")
self.logger.info(f" - {self.performance_file}")
def _test_single_thinking_session(self) -> bool:
"""Test a complete thinking session with multiple steps"""
try:
self.logger.info(" 1.1: Testing single thinking session")
# Step 1: Start thinking analysis
self.logger.info(" 1.1.1: Step 1 - Initial thinking analysis")
response1, continuation_id = self.call_mcp_tool(
"thinkdeep",
{
"step": "I need to think deeply about the microservices migration strategy. Let me analyze the trade-offs, risks, and implementation approach systematically.",
"step_number": 1,
"total_steps": 4,
"next_step_required": True,
"findings": "Initial analysis shows significant architectural complexity but potential for major scalability and development velocity improvements. Need to carefully consider migration strategy and service boundaries.",
"files_checked": [self.architecture_file, self.requirements_file],
"relevant_files": [self.architecture_file, self.requirements_file],
"relevant_context": ["microservices_migration", "service_boundaries", "data_consistency"],
"confidence": "low",
"problem_context": "Enterprise application migration from monolith to microservices",
"focus_areas": ["architecture", "scalability", "risk_assessment"],
},
)
if not response1 or not continuation_id:
self.logger.error("Failed to get initial thinking response")
return False
# Parse and validate JSON response
response1_data = self._parse_thinkdeep_response(response1)
if not response1_data:
return False
# Validate step 1 response structure - expect pause_for_thinkdeep for next_step_required=True
if not self._validate_step_response(response1_data, 1, 4, True, "pause_for_thinkdeep"):
return False
self.logger.info(f" ✅ Step 1 successful, continuation_id: {continuation_id}")
# Step 2: Deep analysis
self.logger.info(" 1.1.2: Step 2 - Deep analysis of alternatives")
response2, _ = self.call_mcp_tool(
"thinkdeep",
{
"step": "Analyzing different migration approaches: strangler fig pattern vs big bang vs gradual extraction. Each has different risk profiles and timelines.",
"step_number": 2,
"total_steps": 4,
"next_step_required": True,
"findings": "Strangler fig pattern emerges as best approach: lower risk, incremental value delivery, team learning curve management. Key insight: start with read-only services to minimize data consistency issues.",
"files_checked": [self.architecture_file, self.requirements_file, self.performance_file],
"relevant_files": [self.architecture_file, self.performance_file],
"relevant_context": ["strangler_fig_pattern", "service_extraction", "risk_mitigation"],
"issues_found": [
{"severity": "high", "description": "Data consistency challenges during migration"},
{"severity": "medium", "description": "Team skill gap in distributed systems"},
],
"confidence": "medium",
"continuation_id": continuation_id,
},
)
if not response2:
self.logger.error("Failed to continue thinking to step 2")
return False
response2_data = self._parse_thinkdeep_response(response2)
if not self._validate_step_response(response2_data, 2, 4, True, "pause_for_thinkdeep"):
return False
# Check thinking status tracking
thinking_status = response2_data.get("thinking_status", {})
if thinking_status.get("files_checked", 0) < 3:
self.logger.error("Files checked count not properly tracked")
return False
if thinking_status.get("thinking_confidence") != "medium":
self.logger.error("Confidence level not properly tracked")
return False
self.logger.info(" ✅ Step 2 successful with proper tracking")
# Store continuation_id for next test
self.thinking_continuation_id = continuation_id
return True
except Exception as e:
self.logger.error(f"Single thinking session test failed: {e}")
return False
def _test_thinking_with_backtracking(self) -> bool:
"""Test thinking with backtracking to revise analysis"""
try:
self.logger.info(" 1.2: Testing thinking with backtracking")
# Start a new thinking session for testing backtracking
self.logger.info(" 1.2.1: Start thinking for backtracking test")
response1, continuation_id = self.call_mcp_tool(
"thinkdeep",
{
"step": "Thinking about optimal database architecture for the new microservices",
"step_number": 1,
"total_steps": 4,
"next_step_required": True,
"findings": "Initial thought: each service should have its own database for independence",
"files_checked": [self.architecture_file],
"relevant_files": [self.architecture_file],
"relevant_context": ["database_per_service", "data_independence"],
"confidence": "low",
},
)
if not response1 or not continuation_id:
self.logger.error("Failed to start backtracking test thinking")
return False
# Step 2: Initial direction
self.logger.info(" 1.2.2: Step 2 - Initial analysis direction")
response2, _ = self.call_mcp_tool(
"thinkdeep",
{
"step": "Exploring database-per-service pattern implementation",
"step_number": 2,
"total_steps": 4,
"next_step_required": True,
"findings": "Database-per-service creates significant complexity for transactions and reporting",
"files_checked": [self.architecture_file, self.performance_file],
"relevant_files": [self.performance_file],
"relevant_context": ["database_per_service", "transaction_management"],
"issues_found": [
{"severity": "high", "description": "Cross-service transactions become complex"},
{"severity": "medium", "description": "Reporting queries span multiple databases"},
],
"confidence": "low",
"continuation_id": continuation_id,
},
)
if not response2:
self.logger.error("Failed to continue to step 2")
return False
# Step 3: Backtrack and revise approach
self.logger.info(" 1.2.3: Step 3 - Backtrack and revise thinking")
response3, _ = self.call_mcp_tool(
"thinkdeep",
{
"step": "Backtracking - maybe shared database with service-specific schemas is better initially. Then gradually extract databases as services mature.",
"step_number": 3,
"total_steps": 4,
"next_step_required": True,
"findings": "Hybrid approach: shared database with bounded contexts, then gradual extraction. This reduces initial complexity while preserving migration path to full service independence.",
"files_checked": [self.architecture_file, self.requirements_file],
"relevant_files": [self.architecture_file, self.requirements_file],
"relevant_context": ["shared_database", "bounded_contexts", "gradual_extraction"],
"confidence": "medium",
"backtrack_from_step": 2, # Backtrack from step 2
"continuation_id": continuation_id,
},
)
if not response3:
self.logger.error("Failed to backtrack")
return False
response3_data = self._parse_thinkdeep_response(response3)
if not self._validate_step_response(response3_data, 3, 4, True, "pause_for_thinkdeep"):
return False
self.logger.info(" ✅ Backtracking working correctly")
return True
except Exception as e:
self.logger.error(f"Backtracking test failed: {e}")
return False
def _test_complete_thinking_with_analysis(self) -> bool:
"""Test complete thinking ending with expert analysis"""
try:
self.logger.info(" 1.3: Testing complete thinking with expert analysis")
# Use the continuation from first test
continuation_id = getattr(self, "thinking_continuation_id", None)
if not continuation_id:
# Start fresh if no continuation available
self.logger.info(" 1.3.0: Starting fresh thinking session")
response0, continuation_id = self.call_mcp_tool(
"thinkdeep",
{
"step": "Thinking about the complete microservices migration strategy",
"step_number": 1,
"total_steps": 2,
"next_step_required": True,
"findings": "Comprehensive analysis of migration approaches and risks",
"files_checked": [self.architecture_file, self.requirements_file],
"relevant_files": [self.architecture_file, self.requirements_file],
"relevant_context": ["migration_strategy", "risk_assessment"],
},
)
if not response0 or not continuation_id:
self.logger.error("Failed to start fresh thinking session")
return False
# Final step - trigger expert analysis
self.logger.info(" 1.3.1: Final step - complete thinking analysis")
response_final, _ = self.call_mcp_tool(
"thinkdeep",
{
"step": "Thinking analysis complete. I've thoroughly considered the migration strategy, risks, and implementation approach.",
"step_number": 2,
"total_steps": 2,
"next_step_required": False, # Final step - triggers expert analysis
"findings": "Comprehensive migration strategy: strangler fig pattern with shared database initially, gradual service extraction based on business value and technical feasibility. Key success factors: team training, monitoring infrastructure, and incremental rollout.",
"files_checked": [self.architecture_file, self.requirements_file, self.performance_file],
"relevant_files": [self.architecture_file, self.requirements_file, self.performance_file],
"relevant_context": ["strangler_fig", "migration_strategy", "risk_mitigation", "team_readiness"],
"issues_found": [
{"severity": "medium", "description": "Team needs distributed systems training"},
{"severity": "low", "description": "Monitoring tools need upgrade"},
],
"confidence": "high",
"continuation_id": continuation_id,
"model": "flash", # Use flash for expert analysis
},
)
if not response_final:
self.logger.error("Failed to complete thinking")
return False
response_final_data = self._parse_thinkdeep_response(response_final)
if not response_final_data:
return False
# Validate final response structure - accept both expert analysis and special statuses
valid_final_statuses = ["calling_expert_analysis", "files_required_to_continue"]
if response_final_data.get("status") not in valid_final_statuses:
self.logger.error(
f"Expected status in {valid_final_statuses}, got '{response_final_data.get('status')}'"
)
return False
if not response_final_data.get("thinking_complete"):
self.logger.error("Expected thinking_complete=true for final step")
return False
# Check for expert analysis or special status content
if response_final_data.get("status") == "calling_expert_analysis":
if "expert_analysis" not in response_final_data:
self.logger.error("Missing expert_analysis in final response")
return False
expert_analysis = response_final_data.get("expert_analysis", {})
else:
# For special statuses like files_required_to_continue, analysis may be in content
expert_analysis = response_final_data.get("content", "{}")
if isinstance(expert_analysis, str):
try:
expert_analysis = json.loads(expert_analysis)
except (json.JSONDecodeError, TypeError):
expert_analysis = {"analysis": expert_analysis}
# Check for expected analysis content (checking common patterns)
analysis_text = json.dumps(expert_analysis, ensure_ascii=False).lower()
# Look for thinking analysis validation
thinking_indicators = ["migration", "strategy", "microservices", "risk", "approach", "implementation"]
found_indicators = sum(1 for indicator in thinking_indicators if indicator in analysis_text)
if found_indicators >= 3:
self.logger.info(" ✅ Expert analysis validated the thinking correctly")
else:
self.logger.warning(
f" ⚠️ Expert analysis may not have fully validated the thinking (found {found_indicators}/6 indicators)"
)
# Check complete thinking summary
if "complete_thinking" not in response_final_data:
self.logger.error("Missing complete_thinking in final response")
return False
complete_thinking = response_final_data["complete_thinking"]
if not complete_thinking.get("relevant_context"):
self.logger.error("Missing relevant context in complete thinking")
return False
if "migration_strategy" not in complete_thinking["relevant_context"]:
self.logger.error("Expected context not found in thinking summary")
return False
self.logger.info(" ✅ Complete thinking with expert analysis successful")
return True
except Exception as e:
self.logger.error(f"Complete thinking test failed: {e}")
return False
def _test_certain_confidence(self) -> bool:
"""Test certain confidence behavior - should skip expert analysis"""
try:
self.logger.info(" 1.4: Testing certain confidence behavior")
# Test certain confidence - should skip expert analysis
self.logger.info(" 1.4.1: Certain confidence thinking")
response_certain, _ = self.call_mcp_tool(
"thinkdeep",
{
"step": "I have thoroughly analyzed all aspects of the migration strategy with complete certainty.",
"step_number": 1,
"total_steps": 1,
"next_step_required": False, # Final step
"findings": "Definitive conclusion: strangler fig pattern with phased database extraction is the optimal approach. Risk mitigation through team training and robust monitoring. Timeline: 6 months with monthly service extractions.",
"files_checked": [self.architecture_file, self.requirements_file, self.performance_file],
"relevant_files": [self.architecture_file, self.requirements_file],
"relevant_context": ["migration_complete_strategy", "implementation_plan"],
"confidence": "certain", # This should skip expert analysis
"model": "flash",
},
)
if not response_certain:
self.logger.error("Failed to test certain confidence")
return False
response_certain_data = self._parse_thinkdeep_response(response_certain)
if not response_certain_data:
return False
# Validate certain confidence response - should skip expert analysis
if response_certain_data.get("status") != "deep_thinking_complete_ready_for_implementation":
self.logger.error(
f"Expected status 'deep_thinking_complete_ready_for_implementation', got '{response_certain_data.get('status')}'"
)
return False
if not response_certain_data.get("skip_expert_analysis"):
self.logger.error("Expected skip_expert_analysis=true for certain confidence")
return False
expert_analysis = response_certain_data.get("expert_analysis", {})
if expert_analysis.get("status") != "skipped_due_to_certain_thinking_confidence":
self.logger.error("Expert analysis should be skipped for certain confidence")
return False
self.logger.info(" ✅ Certain confidence behavior working correctly")
return True
except Exception as e:
self.logger.error(f"Certain confidence test failed: {e}")
return False
def call_mcp_tool(self, tool_name: str, params: dict) -> tuple[Optional[str], Optional[str]]:
"""Call an MCP tool in-process - override for thinkdeep-specific response handling"""
# Use in-process implementation to maintain conversation memory
response_text, _ = self.call_mcp_tool_direct(tool_name, params)
if not response_text:
return None, None
# Extract continuation_id from thinkdeep response specifically
continuation_id = self._extract_thinkdeep_continuation_id(response_text)
return response_text, continuation_id
def _extract_thinkdeep_continuation_id(self, response_text: str) -> Optional[str]:
"""Extract continuation_id from thinkdeep response"""
try:
# Parse the response
response_data = json.loads(response_text)
return response_data.get("continuation_id")
except json.JSONDecodeError as e:
self.logger.debug(f"Failed to parse response for thinkdeep continuation_id: {e}")
return None
def _parse_thinkdeep_response(self, response_text: str) -> dict:
"""Parse thinkdeep tool JSON response"""
try:
# Parse the response - it should be direct JSON
return json.loads(response_text)
except json.JSONDecodeError as e:
self.logger.error(f"Failed to parse thinkdeep response as JSON: {e}")
self.logger.error(f"Response text: {response_text[:500]}...")
return {}
def _validate_step_response(
self,
response_data: dict,
expected_step: int,
expected_total: int,
expected_next_required: bool,
expected_status: str,
) -> bool:
"""Validate a thinkdeep thinking step response structure"""
try:
# Check status
if response_data.get("status") != expected_status:
self.logger.error(f"Expected status '{expected_status}', got '{response_data.get('status')}'")
return False
# Check step number
if response_data.get("step_number") != expected_step:
self.logger.error(f"Expected step_number {expected_step}, got {response_data.get('step_number')}")
return False
# Check total steps
if response_data.get("total_steps") != expected_total:
self.logger.error(f"Expected total_steps {expected_total}, got {response_data.get('total_steps')}")
return False
# Check next_step_required
if response_data.get("next_step_required") != expected_next_required:
self.logger.error(
f"Expected next_step_required {expected_next_required}, got {response_data.get('next_step_required')}"
)
return False
# Check thinking_status exists
if "thinking_status" not in response_data:
self.logger.error("Missing thinking_status in response")
return False
# Check next_steps guidance
if not response_data.get("next_steps"):
self.logger.error("Missing next_steps guidance in response")
return False
return True
except Exception as e:
self.logger.error(f"Error validating step response: {e}")
return False
def _test_context_aware_file_embedding(self) -> bool:
"""Test context-aware file embedding optimization"""
try:
self.logger.info(" 1.5: Testing context-aware file embedding")
# Create additional test files for context testing
strategy_doc = """# Implementation Strategy
## Phase 1: Foundation (Month 1-2)
- Set up monitoring and logging infrastructure
- Establish CI/CD pipelines for microservices
- Team training on distributed systems concepts
## Phase 2: Initial Services (Month 3-4)
- Extract read-only services (user profiles, product catalog)
- Implement API gateway
- Set up service discovery
## Phase 3: Core Services (Month 5-6)
- Extract transaction services
- Implement saga patterns for distributed transactions
- Performance optimization and monitoring
"""
tech_stack_doc = """# Technology Stack Decisions
## Service Framework
- Spring Boot 2.7 (team familiarity)
- Docker containers
- Kubernetes orchestration
## Communication
- REST APIs for synchronous communication
- Apache Kafka for asynchronous messaging
- gRPC for high-performance internal communication
## Data Layer
- PostgreSQL (existing expertise)
- Redis for caching
- Elasticsearch for search and analytics
## Monitoring
- Prometheus + Grafana
- Distributed tracing with Jaeger
- Centralized logging with ELK stack
"""
# Create test files
strategy_file = self.create_additional_test_file("implementation_strategy.md", strategy_doc)
tech_stack_file = self.create_additional_test_file("tech_stack.md", tech_stack_doc)
# Test 1: New conversation, intermediate step - should only reference files
self.logger.info(" 1.5.1: New conversation intermediate step (should reference only)")
response1, continuation_id = self.call_mcp_tool(
"thinkdeep",
{
"step": "Starting deep thinking about implementation timeline and technology choices",
"step_number": 1,
"total_steps": 3,
"next_step_required": True, # Intermediate step
"findings": "Initial analysis of implementation strategy and technology stack decisions",
"files_checked": [strategy_file, tech_stack_file],
"relevant_files": [strategy_file], # This should be referenced, not embedded
"relevant_context": ["implementation_timeline", "technology_selection"],
"confidence": "low",
"model": "flash",
},
)
if not response1 or not continuation_id:
self.logger.error("Failed to start context-aware file embedding test")
return False
response1_data = self._parse_thinkdeep_response(response1)
if not response1_data:
return False
# Check file context - should be reference_only for intermediate step
file_context = response1_data.get("file_context", {})
if file_context.get("type") != "reference_only":
self.logger.error(f"Expected reference_only file context, got: {file_context.get('type')}")
return False
if "Files referenced but not embedded" not in file_context.get("context_optimization", ""):
self.logger.error("Expected context optimization message for reference_only")
return False
self.logger.info(" ✅ Intermediate step correctly uses reference_only file context")
# Test 2: Final step - should embed files for expert analysis
self.logger.info(" 1.5.2: Final step (should embed files)")
response2, _ = self.call_mcp_tool(
"thinkdeep",
{
"step": "Thinking analysis complete - comprehensive evaluation of implementation approach",
"step_number": 2,
"total_steps": 2,
"next_step_required": False, # Final step - should embed files
"continuation_id": continuation_id,
"findings": "Complete analysis: phased implementation with proven technology stack minimizes risk while maximizing team effectiveness. Timeline is realistic with proper training and infrastructure setup.",
"files_checked": [strategy_file, tech_stack_file],
"relevant_files": [strategy_file, tech_stack_file], # Should be fully embedded
"relevant_context": ["implementation_plan", "technology_decisions", "risk_management"],
"confidence": "high",
"model": "flash",
},
)
if not response2:
self.logger.error("Failed to complete to final step")
return False
response2_data = self._parse_thinkdeep_response(response2)
if not response2_data:
return False
# Check file context - should be fully_embedded for final step
file_context2 = response2_data.get("file_context", {})
if file_context2.get("type") != "fully_embedded":
self.logger.error(
f"Expected fully_embedded file context for final step, got: {file_context2.get('type')}"
)
return False
if "Full file content embedded for expert analysis" not in file_context2.get("context_optimization", ""):
self.logger.error("Expected expert analysis optimization message for fully_embedded")
return False
self.logger.info(" ✅ Final step correctly uses fully_embedded file context")
# Verify expert analysis was called for final step
if response2_data.get("status") != "calling_expert_analysis":
self.logger.error("Final step should trigger expert analysis")
return False
if "expert_analysis" not in response2_data:
self.logger.error("Expert analysis should be present in final step")
return False
self.logger.info(" ✅ Context-aware file embedding test completed successfully")
return True
except Exception as e:
self.logger.error(f"Context-aware file embedding test failed: {e}")
return False
def _test_multi_step_file_context(self) -> bool:
"""Test multi-step workflow with proper file context transitions"""
try:
self.logger.info(" 1.6: Testing multi-step file context optimization")
# Create a complex scenario with multiple thinking documents
risk_analysis = """# Risk Analysis
## Technical Risks
- Service mesh complexity
- Data consistency challenges
- Performance degradation during migration
- Operational overhead increase
## Business Risks
- Extended development timelines
- Potential system instability
- Team productivity impact
- Customer experience disruption
## Mitigation Strategies
- Gradual rollout with feature flags
- Comprehensive monitoring and alerting
- Rollback procedures for each phase
- Customer communication plan
"""
success_metrics = """# Success Metrics and KPIs
## Development Velocity
- Deployment frequency: Target 10x improvement
- Lead time for changes: <2 hours
- Mean time to recovery: <30 minutes
- Change failure rate: <5%
## System Performance
- Response time: <200ms p95
- System availability: 99.9%
- Throughput: 50k requests/minute
- Resource utilization: 70% optimal
## Business Impact
- Developer satisfaction: >8/10
- Time to market: 50% reduction
- Operational costs: 20% reduction
- System reliability: 99.9% uptime
"""
# Create test files
risk_file = self.create_additional_test_file("risk_analysis.md", risk_analysis)
metrics_file = self.create_additional_test_file("success_metrics.md", success_metrics)
# Step 1: Start thinking analysis (new conversation)
self.logger.info(" 1.6.1: Step 1 - Start thinking analysis")
response1, continuation_id = self.call_mcp_tool(
"thinkdeep",
{
"step": "Beginning comprehensive analysis of migration risks and success criteria",
"step_number": 1,
"total_steps": 4,
"next_step_required": True,
"findings": "Initial assessment of risk factors and success metrics for microservices migration",
"files_checked": [risk_file],
"relevant_files": [risk_file],
"relevant_context": ["risk_assessment", "migration_planning"],
"confidence": "low",
"model": "flash",
},
)
if not response1 or not continuation_id:
self.logger.error("Failed to start multi-step file context test")
return False
response1_data = self._parse_thinkdeep_response(response1)
# Validate step 1 - should use reference_only
file_context1 = response1_data.get("file_context", {})
if file_context1.get("type") != "reference_only":
self.logger.error("Step 1 should use reference_only file context")
return False
self.logger.info(" ✅ Step 1: reference_only file context")
# Step 2: Expand thinking analysis
self.logger.info(" 1.6.2: Step 2 - Expand thinking analysis")
response2, _ = self.call_mcp_tool(
"thinkdeep",
{
"step": "Deepening analysis by correlating risks with success metrics",
"step_number": 2,
"total_steps": 4,
"next_step_required": True,
"continuation_id": continuation_id,
"findings": "Key insight: technical risks directly impact business metrics. Need balanced approach prioritizing high-impact, low-risk improvements first.",
"files_checked": [risk_file, metrics_file],
"relevant_files": [risk_file, metrics_file],
"relevant_context": ["risk_metric_correlation", "priority_matrix"],
"confidence": "medium",
"model": "flash",
},
)
if not response2:
self.logger.error("Failed to continue to step 2")
return False
response2_data = self._parse_thinkdeep_response(response2)
# Validate step 2 - should still use reference_only
file_context2 = response2_data.get("file_context", {})
if file_context2.get("type") != "reference_only":
self.logger.error("Step 2 should use reference_only file context")
return False
self.logger.info(" ✅ Step 2: reference_only file context with multiple files")
# Step 3: Deep analysis
self.logger.info(" 1.6.3: Step 3 - Deep strategic analysis")
response3, _ = self.call_mcp_tool(
"thinkdeep",
{
"step": "Synthesizing risk mitigation strategies with measurable success criteria",
"step_number": 3,
"total_steps": 4,
"next_step_required": True,
"continuation_id": continuation_id,
"findings": "Strategic framework emerging: phase-gate approach with clear go/no-go criteria at each milestone. Emphasis on early wins to build confidence and momentum.",
"files_checked": [risk_file, metrics_file, self.requirements_file],
"relevant_files": [risk_file, metrics_file, self.requirements_file],
"relevant_context": ["phase_gate_approach", "milestone_criteria", "early_wins"],
"confidence": "high",
"model": "flash",
},
)
if not response3:
self.logger.error("Failed to continue to step 3")
return False
response3_data = self._parse_thinkdeep_response(response3)
# Validate step 3 - should still use reference_only
file_context3 = response3_data.get("file_context", {})
if file_context3.get("type") != "reference_only":
self.logger.error("Step 3 should use reference_only file context")
return False
self.logger.info(" ✅ Step 3: reference_only file context")
# Step 4: Final analysis with expert consultation
self.logger.info(" 1.6.4: Step 4 - Final step with expert analysis")
response4, _ = self.call_mcp_tool(
"thinkdeep",
{
"step": "Thinking analysis complete - comprehensive strategic framework developed",
"step_number": 4,
"total_steps": 4,
"next_step_required": False, # Final step - should embed files
"continuation_id": continuation_id,
"findings": "Complete strategic framework: risk-balanced migration with measurable success criteria, phase-gate governance, and clear rollback procedures. Framework aligns technical execution with business objectives.",
"files_checked": [risk_file, metrics_file, self.requirements_file, self.architecture_file],
"relevant_files": [risk_file, metrics_file, self.requirements_file, self.architecture_file],
"relevant_context": ["strategic_framework", "governance_model", "success_measurement"],
"confidence": "high",
"model": "flash",
},
)
if not response4:
self.logger.error("Failed to complete to final step")
return False
response4_data = self._parse_thinkdeep_response(response4)
# Validate step 4 - should use fully_embedded for expert analysis
file_context4 = response4_data.get("file_context", {})
if file_context4.get("type") != "fully_embedded":
self.logger.error("Step 4 (final) should use fully_embedded file context")
return False
if "expert analysis" not in file_context4.get("context_optimization", "").lower():
self.logger.error("Final step should mention expert analysis in context optimization")
return False
# Verify expert analysis was triggered
if response4_data.get("status") != "calling_expert_analysis":
self.logger.error("Final step should trigger expert analysis")
return False
# Check that expert analysis has file context
expert_analysis = response4_data.get("expert_analysis", {})
if not expert_analysis:
self.logger.error("Expert analysis should be present in final step")
return False
self.logger.info(" ✅ Step 4: fully_embedded file context with expert analysis")
# Validate the complete workflow progression
progression_summary = {
"step_1": "reference_only (new conversation, intermediate)",
"step_2": "reference_only (continuation, intermediate)",
"step_3": "reference_only (continuation, intermediate)",
"step_4": "fully_embedded (continuation, final)",
}
self.logger.info(" 📋 File context progression:")
for step, context_type in progression_summary.items():
self.logger.info(f" {step}: {context_type}")
self.logger.info(" ✅ Multi-step file context optimization test completed successfully")
return True
except Exception as e:
self.logger.error(f"Multi-step file context test failed: {e}")
return False