test_consensus_three_models.py•7.23 kB
"""
Test consensus tool with three models demonstrating sequential processing
"""
import json
from .base_test import BaseSimulatorTest
class TestConsensusThreeModels(BaseSimulatorTest):
"""Test consensus tool functionality with three models (testing sequential processing)"""
@property
def test_name(self) -> str:
return "consensus_three_models"
@property
def test_description(self) -> str:
return "Test consensus tool with three models using flash:against, flash:for, local-llama:neutral"
def run_test(self) -> bool:
"""Run three-model consensus test"""
try:
self.logger.info("Testing consensus tool with three models: flash:against, flash:for, local-llama:neutral")
# Send request with three objects using new workflow parameters
response, continuation_id = self.call_mcp_tool(
"consensus",
{
"step": "Is a sync manager class a good idea for my CoolTodos app?",
"step_number": 1,
"total_steps": 3, # 3 models = 3 steps
"next_step_required": True,
"findings": "Initial analysis needed on sync manager class architecture decision for CoolTodos app",
"models": [
{
"model": "flash",
"stance": "against",
"stance_prompt": "You are a software architecture critic. Focus on the potential downsides of adding a sync manager class: complexity overhead, maintenance burden, potential for over-engineering, and whether simpler alternatives exist. Consider if this adds unnecessary abstraction layers.",
},
{
"model": "flash",
"stance": "for",
"stance_prompt": "You are a software architecture advocate. Focus on the benefits of a sync manager class: separation of concerns, testability, maintainability, and how it can improve the overall architecture. Consider scalability and code organization advantages.",
},
{
"model": "local-llama",
"stance": "neutral",
"stance_prompt": "You are a pragmatic software engineer. Provide a balanced analysis considering both the benefits and drawbacks. Focus on the specific context of a CoolTodos app and what factors would determine if this is the right choice.",
},
],
"model": "flash", # Default model for Claude's execution
},
)
# Validate response
if not response:
self.logger.error("Failed to get response from three-model consensus tool")
return False
self.logger.info(f"Three-model consensus response preview: {response[:500]}...")
# Parse the JSON response
try:
consensus_data = json.loads(response)
except json.JSONDecodeError:
self.logger.error(f"Failed to parse three-model consensus response as JSON: {response}")
return False
# Validate consensus structure
if "status" not in consensus_data:
self.logger.error("Missing 'status' field in three-model consensus response")
return False
# Check for step 1 status (Claude analysis + first model consultation)
expected_status = "analysis_and_first_model_consulted"
if consensus_data["status"] != expected_status:
self.logger.error(
f"Three-model consensus step 1 failed with status: {consensus_data['status']}, expected: {expected_status}"
)
# Log additional error details for debugging
if "error" in consensus_data:
self.logger.error(f"Error message: {consensus_data['error']}")
if "models_errored" in consensus_data:
self.logger.error(f"Models that errored: {consensus_data['models_errored']}")
if "models_skipped" in consensus_data:
self.logger.error(f"Models skipped: {consensus_data['models_skipped']}")
if "next_steps" in consensus_data:
self.logger.error(f"Suggested next steps: {consensus_data['next_steps']}")
return False
# Check that we have model response from step 1
model_response = consensus_data.get("model_response")
if not model_response:
self.logger.error("Three-model consensus step 1 response missing model_response")
return False
# Check that model response has expected structure
if not model_response.get("model") or not model_response.get("verdict"):
self.logger.error("Model response missing required fields (model or verdict)")
return False
# Check step information
if consensus_data.get("step_number") != 1:
self.logger.error(f"Expected step_number 1, got: {consensus_data.get('step_number')}")
return False
if not consensus_data.get("next_step_required"):
self.logger.error("Expected next_step_required=True for step 1")
return False
self.logger.info(f"Consensus step 1 consulted model: {model_response.get('model')}")
self.logger.info(f"Model stance: {model_response.get('stance', 'neutral')}")
self.logger.info(f"Response status: {model_response.get('status', 'unknown')}")
# Check metadata contains model name
metadata = consensus_data.get("metadata", {})
if not metadata.get("model_name"):
self.logger.error("Missing model_name in metadata")
return False
self.logger.info(f"Model name in metadata: {metadata.get('model_name')}")
# Verify we have analysis from Claude
agent_analysis = consensus_data.get("agent_analysis")
if not agent_analysis:
self.logger.error("Missing Claude's analysis in step 1")
return False
analysis_text = agent_analysis.get("initial_analysis", "")
self.logger.info(f"Claude analysis length: {len(analysis_text)} characters")
self.logger.info("✓ Three-model consensus tool test completed successfully")
self.logger.info(f"✓ Step 1 completed with model: {model_response.get('model')}")
self.logger.info(f"✓ Analysis provided: {len(analysis_text)} characters")
self.logger.info(f"✓ Model metadata properly included: {metadata.get('model_name')}")
self.logger.info("✓ Ready for step 2 continuation")
return True
except Exception as e:
self.logger.error(f"Three-model consensus test failed with exception: {str(e)}")
return False