test_debug_validation.py•43.1 kB
#!/usr/bin/env python3
"""
DebugWorkflow Tool Validation Test
Tests the debug tool's capabilities using the new workflow architecture.
This validates that the new workflow-based implementation maintains
all the functionality of the original debug tool.
"""
import json
from typing import Optional
from .conversation_base_test import ConversationBaseTest
class DebugValidationTest(ConversationBaseTest):
"""Test debug tool with new workflow architecture"""
@property
def test_name(self) -> str:
return "debug_validation"
@property
def test_description(self) -> str:
return "Debug tool validation with new workflow architecture"
def run_test(self) -> bool:
"""Test debug tool capabilities"""
# Set up the test environment
self.setUp()
try:
self.logger.info("Test: DebugWorkflow tool validation (new architecture)")
# Create a Python file with a subtle but realistic bug
self._create_buggy_code()
# Test 1: Single investigation session with multiple steps
if not self._test_single_investigation_session():
return False
# Test 2: Investigation with backtracking
if not self._test_investigation_with_backtracking():
return False
# Test 3: Complete investigation with expert analysis
if not self._test_complete_investigation_with_analysis():
return False
# Test 4: Certain confidence behavior
if not self._test_certain_confidence():
return False
# Test 5: Context-aware file embedding
if not self._test_context_aware_file_embedding():
return False
# Test 6: Multi-step file context optimization
if not self._test_multi_step_file_context():
return False
self.logger.info(" ✅ All debug validation tests passed")
return True
except Exception as e:
self.logger.error(f"DebugWorkflow validation test failed: {e}")
return False
def _create_buggy_code(self):
"""Create test files with a subtle bug for debugging"""
# Create a Python file with dictionary iteration bug
buggy_code = """#!/usr/bin/env python3
import json
from datetime import datetime, timedelta
class SessionManager:
def __init__(self):
self.active_sessions = {}
self.session_timeout = 30 * 60 # 30 minutes in seconds
def create_session(self, user_id, user_data):
\"\"\"Create a new user session\"\"\"
session_id = f"sess_{user_id}_{datetime.now().timestamp()}"
session_info = {
'user_id': user_id,
'user_data': user_data,
'created_at': datetime.now(),
'expires_at': datetime.now() + timedelta(seconds=self.session_timeout)
}
self.active_sessions[session_id] = session_info
return session_id
def validate_session(self, session_id):
\"\"\"Check if session is valid and not expired\"\"\"
if session_id not in self.active_sessions:
return False
session = self.active_sessions[session_id]
current_time = datetime.now()
# Check if session has expired
if current_time > session['expires_at']:
del self.active_sessions[session_id]
return False
return True
def cleanup_expired_sessions(self):
\"\"\"Remove expired sessions from memory\"\"\"
current_time = datetime.now()
expired_count = 0
# BUG: Modifying dictionary while iterating over it
for session_id, session in self.active_sessions.items():
if current_time > session['expires_at']:
del self.active_sessions[session_id] # This causes RuntimeError
expired_count += 1
return expired_count
"""
# Create test file with subtle bug
self.buggy_file = self.create_additional_test_file("session_manager.py", buggy_code)
self.logger.info(f" ✅ Created test file with subtle bug: {self.buggy_file}")
# Create error description
error_description = """ISSUE DESCRIPTION:
Our session management system is experiencing intermittent failures during cleanup operations.
SYMPTOMS:
- Random RuntimeError: dictionary changed size during iteration
- Occurs during high load when many sessions expire simultaneously
- Error happens in cleanup_expired_sessions method
- Affects about 5% of cleanup operations
ERROR LOG:
RuntimeError: dictionary changed size during iteration
File "session_manager.py", line 44, in cleanup_expired_sessions
for session_id, session in self.active_sessions.items():
"""
self.error_file = self.create_additional_test_file("error_description.txt", error_description)
self.logger.info(f" ✅ Created error description file: {self.error_file}")
def _test_single_investigation_session(self) -> bool:
"""Test a complete investigation session with multiple steps"""
try:
self.logger.info(" 1.1: Testing single investigation session")
# Step 1: Start investigation
self.logger.info(" 1.1.1: Step 1 - Initial investigation")
response1, continuation_id = self.call_mcp_tool(
"debug",
{
"step": "I need to investigate intermittent RuntimeError during session cleanup. Let me start by examining the error description and understanding the symptoms.",
"step_number": 1,
"total_steps": 4,
"next_step_required": True,
"findings": "RuntimeError occurs during dictionary iteration in cleanup_expired_sessions method. Error happens intermittently during high load.",
"files_checked": [self.error_file],
"relevant_files": [self.error_file],
},
)
if not response1 or not continuation_id:
self.logger.error("Failed to get initial investigation response")
return False
# Parse and validate JSON response
response1_data = self._parse_debug_response(response1)
if not response1_data:
return False
# Validate step 1 response structure - expect pause_for_investigation for next_step_required=True
if not self._validate_step_response(response1_data, 1, 4, True, "pause_for_investigation"):
return False
self.logger.info(f" ✅ Step 1 successful, continuation_id: {continuation_id}")
# Step 2: Examine the code
self.logger.info(" 1.1.2: Step 2 - Code examination")
response2, _ = self.call_mcp_tool(
"debug",
{
"step": "Now examining the session_manager.py file to understand the cleanup_expired_sessions implementation and identify the root cause.",
"step_number": 2,
"total_steps": 4,
"next_step_required": True,
"findings": "Found the issue: cleanup_expired_sessions modifies self.active_sessions dictionary while iterating over it with .items(). This causes RuntimeError when del is called during iteration.",
"files_checked": [self.error_file, self.buggy_file],
"relevant_files": [self.buggy_file],
"relevant_context": ["SessionManager.cleanup_expired_sessions"],
"hypothesis": "Dictionary is being modified during iteration causing RuntimeError",
"confidence": "high",
"continuation_id": continuation_id,
},
)
if not response2:
self.logger.error("Failed to continue investigation to step 2")
return False
response2_data = self._parse_debug_response(response2)
if not self._validate_step_response(response2_data, 2, 4, True, "pause_for_investigation"):
return False
# Check investigation status tracking
investigation_status = response2_data.get("investigation_status", {})
if investigation_status.get("files_checked", 0) < 2:
self.logger.error("Files checked count not properly tracked")
return False
if investigation_status.get("relevant_context", 0) != 1:
self.logger.error("Relevant context not properly tracked")
return False
if investigation_status.get("current_confidence") != "high":
self.logger.error("Confidence level not properly tracked")
return False
self.logger.info(" ✅ Step 2 successful with proper tracking")
# Store continuation_id for next test
self.investigation_continuation_id = continuation_id
return True
except Exception as e:
self.logger.error(f"Single investigation session test failed: {e}")
return False
def _test_investigation_with_backtracking(self) -> bool:
"""Test investigation with backtracking to revise findings"""
try:
self.logger.info(" 1.2: Testing investigation with backtracking")
# Start a new investigation for testing backtracking
self.logger.info(" 1.2.1: Start investigation for backtracking test")
response1, continuation_id = self.call_mcp_tool(
"debug",
{
"step": "Investigating performance degradation in data processing pipeline",
"step_number": 1,
"total_steps": 4,
"next_step_required": True,
"findings": "Initial analysis shows slow database queries",
"files_checked": ["/db/queries.py"],
"relevant_files": ["/db/queries.py"],
},
)
if not response1 or not continuation_id:
self.logger.error("Failed to start backtracking test investigation")
return False
# Step 2: Wrong direction
self.logger.info(" 1.2.2: Step 2 - Wrong investigation path")
response2, _ = self.call_mcp_tool(
"debug",
{
"step": "Focusing on database optimization strategies",
"step_number": 2,
"total_steps": 4,
"next_step_required": True,
"findings": "Database queries seem optimized, might be looking in wrong place",
"files_checked": ["/db/queries.py", "/db/indexes.py"],
"relevant_files": [],
"hypothesis": "Database performance issues",
"confidence": "low",
"continuation_id": continuation_id,
},
)
if not response2:
self.logger.error("Failed to continue to step 2")
return False
# Step 3: Backtrack from step 2
self.logger.info(" 1.2.3: Step 3 - Backtrack and revise approach")
response3, _ = self.call_mcp_tool(
"debug",
{
"step": "Backtracking - the issue might not be database related. Let me investigate the data processing algorithm instead.",
"step_number": 3,
"total_steps": 4,
"next_step_required": True,
"findings": "Found inefficient nested loops in data processor causing O(n²) complexity",
"files_checked": ["/processor/algorithm.py"],
"relevant_files": ["/processor/algorithm.py"],
"relevant_context": ["DataProcessor.process_batch"],
"hypothesis": "Inefficient algorithm causing performance issues",
"confidence": "medium",
"backtrack_from_step": 2, # Backtrack from step 2
"continuation_id": continuation_id,
},
)
if not response3:
self.logger.error("Failed to backtrack")
return False
response3_data = self._parse_debug_response(response3)
if not self._validate_step_response(response3_data, 3, 4, True, "pause_for_investigation"):
return False
self.logger.info(" ✅ Backtracking working correctly")
return True
except Exception as e:
self.logger.error(f"Backtracking test failed: {e}")
return False
def _test_complete_investigation_with_analysis(self) -> bool:
"""Test complete investigation ending with expert analysis"""
try:
self.logger.info(" 1.3: Testing complete investigation with expert analysis")
# Use the continuation from first test
continuation_id = getattr(self, "investigation_continuation_id", None)
if not continuation_id:
# Start fresh if no continuation available
self.logger.info(" 1.3.0: Starting fresh investigation")
response0, continuation_id = self.call_mcp_tool(
"debug",
{
"step": "Investigating the dictionary iteration bug in session cleanup",
"step_number": 1,
"total_steps": 2,
"next_step_required": True,
"findings": "Found dictionary modification during iteration",
"files_checked": [self.buggy_file],
"relevant_files": [self.buggy_file],
"relevant_context": ["SessionManager.cleanup_expired_sessions"],
},
)
if not response0 or not continuation_id:
self.logger.error("Failed to start fresh investigation")
return False
# Final step - trigger expert analysis
self.logger.info(" 1.3.1: Final step - complete investigation")
response_final, _ = self.call_mcp_tool(
"debug",
{
"step": "Investigation complete. The root cause is confirmed: cleanup_expired_sessions modifies the dictionary while iterating, causing RuntimeError.",
"step_number": 2,
"total_steps": 2,
"next_step_required": False, # Final step - triggers expert analysis
"findings": "Root cause identified: del self.active_sessions[session_id] on line 46 modifies dictionary during iteration starting at line 44. Fix: collect expired IDs first, then delete.",
"files_checked": [self.buggy_file],
"relevant_files": [self.buggy_file],
"relevant_context": ["SessionManager.cleanup_expired_sessions"],
"hypothesis": "Dictionary modification during iteration causes RuntimeError in cleanup_expired_sessions",
"confidence": "high",
"continuation_id": continuation_id,
"model": "flash", # Use flash for expert analysis
},
)
if not response_final:
self.logger.error("Failed to complete investigation")
return False
response_final_data = self._parse_debug_response(response_final)
if not response_final_data:
return False
# Validate final response structure - expect calling_expert_analysis for next_step_required=False
if response_final_data.get("status") != "calling_expert_analysis":
self.logger.error(
f"Expected status 'calling_expert_analysis', got '{response_final_data.get('status')}'"
)
return False
if not response_final_data.get("investigation_complete"):
self.logger.error("Expected investigation_complete=true for final step")
return False
# Check for expert analysis
if "expert_analysis" not in response_final_data:
self.logger.error("Missing expert_analysis in final response")
return False
expert_analysis = response_final_data.get("expert_analysis", {})
# Check for expected analysis content (checking common patterns)
analysis_text = json.dumps(expert_analysis, ensure_ascii=False).lower()
# Look for bug identification
bug_indicators = ["dictionary", "iteration", "modify", "runtime", "error", "del"]
found_indicators = sum(1 for indicator in bug_indicators if indicator in analysis_text)
if found_indicators >= 3:
self.logger.info(" ✅ Expert analysis identified the bug correctly")
else:
self.logger.warning(
f" ⚠️ Expert analysis may not have fully identified the bug (found {found_indicators}/6 indicators)"
)
# Check complete investigation summary
if "complete_investigation" not in response_final_data:
self.logger.error("Missing complete_investigation in final response")
return False
complete_investigation = response_final_data["complete_investigation"]
if not complete_investigation.get("relevant_context"):
self.logger.error("Missing relevant context in complete investigation")
return False
if "SessionManager.cleanup_expired_sessions" not in complete_investigation["relevant_context"]:
self.logger.error("Expected method not found in investigation summary")
return False
self.logger.info(" ✅ Complete investigation with expert analysis successful")
return True
except Exception as e:
self.logger.error(f"Complete investigation test failed: {e}")
return False
def _test_certain_confidence(self) -> bool:
"""Test certain confidence behavior - should skip expert analysis"""
try:
self.logger.info(" 1.4: Testing certain confidence behavior")
# Test certain confidence - should skip expert analysis
self.logger.info(" 1.4.1: Certain confidence investigation")
response_certain, _ = self.call_mcp_tool(
"debug",
{
"step": "I have confirmed the exact root cause with 100% certainty: dictionary modification during iteration.",
"step_number": 1,
"total_steps": 1,
"next_step_required": False, # Final step
"findings": "The bug is on line 44-47: for loop iterates over dict.items() while del modifies the dict inside the loop. Fix is simple: collect expired IDs first, then delete after iteration.",
"files_checked": [self.buggy_file],
"relevant_files": [self.buggy_file],
"relevant_context": ["SessionManager.cleanup_expired_sessions"],
"hypothesis": "Dictionary modification during iteration causes RuntimeError - fix is straightforward",
"confidence": "certain", # This should skip expert analysis
"model": "flash",
},
)
if not response_certain:
self.logger.error("Failed to test certain confidence")
return False
response_certain_data = self._parse_debug_response(response_certain)
if not response_certain_data:
return False
# Validate certain confidence response - should skip expert analysis
if response_certain_data.get("status") != "certain_confidence_proceed_with_fix":
self.logger.error(
f"Expected status 'certain_confidence_proceed_with_fix', got '{response_certain_data.get('status')}'"
)
return False
if not response_certain_data.get("skip_expert_analysis"):
self.logger.error("Expected skip_expert_analysis=true for certain confidence")
return False
expert_analysis = response_certain_data.get("expert_analysis", {})
if expert_analysis.get("status") != "skipped_due_to_certain_confidence":
self.logger.error("Expert analysis should be skipped for certain confidence")
return False
self.logger.info(" ✅ Certain confidence behavior working correctly")
return True
except Exception as e:
self.logger.error(f"Certain confidence test failed: {e}")
return False
def call_mcp_tool(self, tool_name: str, params: dict) -> tuple[Optional[str], Optional[str]]:
"""Call an MCP tool in-process - override for debug-specific response handling"""
# Use in-process implementation to maintain conversation memory
response_text, _ = self.call_mcp_tool_direct(tool_name, params)
if not response_text:
return None, None
# Extract continuation_id from debug response specifically
continuation_id = self._extract_debug_continuation_id(response_text)
return response_text, continuation_id
def _extract_debug_continuation_id(self, response_text: str) -> Optional[str]:
"""Extract continuation_id from debug response"""
try:
# Parse the response
response_data = json.loads(response_text)
return response_data.get("continuation_id")
except json.JSONDecodeError as e:
self.logger.debug(f"Failed to parse response for debug continuation_id: {e}")
return None
def _parse_debug_response(self, response_text: str) -> dict:
"""Parse debug tool JSON response"""
try:
# Parse the response - it should be direct JSON
return json.loads(response_text)
except json.JSONDecodeError as e:
self.logger.error(f"Failed to parse debug response as JSON: {e}")
self.logger.error(f"Response text: {response_text[:500]}...")
return {}
def _validate_step_response(
self,
response_data: dict,
expected_step: int,
expected_total: int,
expected_next_required: bool,
expected_status: str,
) -> bool:
"""Validate a debug investigation step response structure"""
try:
# Check status
if response_data.get("status") != expected_status:
self.logger.error(f"Expected status '{expected_status}', got '{response_data.get('status')}'")
return False
# Check step number
if response_data.get("step_number") != expected_step:
self.logger.error(f"Expected step_number {expected_step}, got {response_data.get('step_number')}")
return False
# Check total steps
if response_data.get("total_steps") != expected_total:
self.logger.error(f"Expected total_steps {expected_total}, got {response_data.get('total_steps')}")
return False
# Check next_step_required
if response_data.get("next_step_required") != expected_next_required:
self.logger.error(
f"Expected next_step_required {expected_next_required}, got {response_data.get('next_step_required')}"
)
return False
# Check investigation_status exists
if "investigation_status" not in response_data:
self.logger.error("Missing investigation_status in response")
return False
# Check next_steps guidance
if not response_data.get("next_steps"):
self.logger.error("Missing next_steps guidance in response")
return False
return True
except Exception as e:
self.logger.error(f"Error validating step response: {e}")
return False
def _test_context_aware_file_embedding(self) -> bool:
"""Test context-aware file embedding optimization"""
try:
self.logger.info(" 1.5: Testing context-aware file embedding")
# Create multiple test files for context testing
file1_content = """#!/usr/bin/env python3
def process_data(data):
\"\"\"Process incoming data\"\"\"
result = []
for item in data:
if item.get('valid'):
result.append(item['value'])
return result
"""
file2_content = """#!/usr/bin/env python3
def validate_input(data):
\"\"\"Validate input data\"\"\"
if not isinstance(data, list):
raise ValueError("Data must be a list")
for item in data:
if not isinstance(item, dict):
raise ValueError("Items must be dictionaries")
if 'value' not in item:
raise ValueError("Items must have 'value' key")
return True
"""
# Create test files
file1 = self.create_additional_test_file("data_processor.py", file1_content)
file2 = self.create_additional_test_file("validator.py", file2_content)
# Test 1: New conversation, intermediate step - should only reference files
self.logger.info(" 1.5.1: New conversation intermediate step (should reference only)")
response1, continuation_id = self.call_mcp_tool(
"debug",
{
"step": "Starting investigation of data processing pipeline",
"step_number": 1,
"total_steps": 3,
"next_step_required": True, # Intermediate step
"findings": "Initial analysis of data processing components",
"files_checked": [file1, file2],
"relevant_files": [file1], # This should be referenced, not embedded
"relevant_context": ["process_data"],
"hypothesis": "Investigating data flow",
"confidence": "low",
"model": "flash",
},
)
if not response1 or not continuation_id:
self.logger.error("Failed to start context-aware file embedding test")
return False
response1_data = self._parse_debug_response(response1)
if not response1_data:
return False
# Check file context - should be reference_only for intermediate step
file_context = response1_data.get("file_context", {})
if file_context.get("type") != "reference_only":
self.logger.error(f"Expected reference_only file context, got: {file_context.get('type')}")
return False
if "Files referenced but not embedded" not in file_context.get("context_optimization", ""):
self.logger.error("Expected context optimization message for reference_only")
return False
self.logger.info(" ✅ Intermediate step correctly uses reference_only file context")
# Test 2: Intermediate step with continuation - should still only reference
self.logger.info(" 1.5.2: Intermediate step with continuation (should reference only)")
response2, _ = self.call_mcp_tool(
"debug",
{
"step": "Continuing investigation with more detailed analysis",
"step_number": 2,
"total_steps": 3,
"next_step_required": True, # Still intermediate
"continuation_id": continuation_id,
"findings": "Found potential issues in validation logic",
"files_checked": [file1, file2],
"relevant_files": [file1, file2], # Both files referenced
"relevant_context": ["process_data", "validate_input"],
"hypothesis": "Validation might be too strict",
"confidence": "medium",
"model": "flash",
},
)
if not response2:
self.logger.error("Failed to continue to step 2")
return False
response2_data = self._parse_debug_response(response2)
if not response2_data:
return False
# Check file context - should still be reference_only
file_context2 = response2_data.get("file_context", {})
if file_context2.get("type") != "reference_only":
self.logger.error(f"Expected reference_only file context for step 2, got: {file_context2.get('type')}")
return False
# Should include reference note
if not file_context2.get("note"):
self.logger.error("Expected file reference note for intermediate step")
return False
reference_note = file_context2.get("note", "")
if "data_processor.py" not in reference_note or "validator.py" not in reference_note:
self.logger.error("File reference note should mention both files")
return False
self.logger.info(" ✅ Intermediate step with continuation correctly uses reference_only")
# Test 3: Final step - should embed files for expert analysis
self.logger.info(" 1.5.3: Final step (should embed files)")
response3, _ = self.call_mcp_tool(
"debug",
{
"step": "Investigation complete - identified the root cause",
"step_number": 3,
"total_steps": 3,
"next_step_required": False, # Final step - should embed files
"continuation_id": continuation_id,
"findings": "Root cause: validator is rejecting valid data due to strict type checking",
"files_checked": [file1, file2],
"relevant_files": [file1, file2], # Should be fully embedded
"relevant_context": ["process_data", "validate_input"],
"hypothesis": "Validation logic is too restrictive for valid edge cases",
"confidence": "high",
"model": "flash",
},
)
if not response3:
self.logger.error("Failed to complete to final step")
return False
response3_data = self._parse_debug_response(response3)
if not response3_data:
return False
# Check file context - should be fully_embedded for final step
file_context3 = response3_data.get("file_context", {})
if file_context3.get("type") != "fully_embedded":
self.logger.error(
f"Expected fully_embedded file context for final step, got: {file_context3.get('type')}"
)
return False
if "Full file content embedded for expert analysis" not in file_context3.get("context_optimization", ""):
self.logger.error("Expected expert analysis optimization message for fully_embedded")
return False
# Should show files embedded count
files_embedded = file_context3.get("files_embedded", 0)
if files_embedded == 0:
# This is OK - files might already be in conversation history
self.logger.info(
" ℹ️ Files embedded count is 0 - files already in conversation history (smart deduplication)"
)
else:
self.logger.info(f" ✅ Files embedded count: {files_embedded}")
self.logger.info(" ✅ Final step correctly uses fully_embedded file context")
# Verify expert analysis was called for final step
if response3_data.get("status") != "calling_expert_analysis":
self.logger.error("Final step should trigger expert analysis")
return False
if "expert_analysis" not in response3_data:
self.logger.error("Expert analysis should be present in final step")
return False
self.logger.info(" ✅ Context-aware file embedding test completed successfully")
return True
except Exception as e:
self.logger.error(f"Context-aware file embedding test failed: {e}")
return False
def _test_multi_step_file_context(self) -> bool:
"""Test multi-step workflow with proper file context transitions"""
try:
self.logger.info(" 1.6: Testing multi-step file context optimization")
# Create a complex scenario with multiple files
config_content = """#!/usr/bin/env python3
import os
DATABASE_URL = os.getenv('DATABASE_URL', 'sqlite:///app.db')
DEBUG_MODE = os.getenv('DEBUG', 'False').lower() == 'true'
MAX_CONNECTIONS = int(os.getenv('MAX_CONNECTIONS', '10'))
# Bug: This will cause issues when MAX_CONNECTIONS is not a valid integer
CACHE_SIZE = MAX_CONNECTIONS * 2 # Problematic if MAX_CONNECTIONS is invalid
"""
server_content = """#!/usr/bin/env python3
from config import DATABASE_URL, DEBUG_MODE, CACHE_SIZE
import sqlite3
class DatabaseServer:
def __init__(self):
self.connection_pool = []
self.cache_size = CACHE_SIZE # This will fail if CACHE_SIZE is invalid
def connect(self):
try:
conn = sqlite3.connect(DATABASE_URL)
self.connection_pool.append(conn)
return conn
except Exception as e:
print(f"Connection failed: {e}")
return None
"""
# Create test files
config_file = self.create_additional_test_file("config.py", config_content)
server_file = self.create_additional_test_file("database_server.py", server_content)
# Step 1: Start investigation (new conversation)
self.logger.info(" 1.6.1: Step 1 - Start investigation")
response1, continuation_id = self.call_mcp_tool(
"debug",
{
"step": "Investigating application startup failures in production environment",
"step_number": 1,
"total_steps": 4,
"next_step_required": True,
"findings": "Application fails to start with configuration errors",
"files_checked": [config_file],
"relevant_files": [config_file],
"relevant_context": [],
"hypothesis": "Configuration issue causing startup failure",
"confidence": "low",
"model": "flash",
},
)
if not response1 or not continuation_id:
self.logger.error("Failed to start multi-step file context test")
return False
response1_data = self._parse_debug_response(response1)
# Validate step 1 - should use reference_only
file_context1 = response1_data.get("file_context", {})
if file_context1.get("type") != "reference_only":
self.logger.error("Step 1 should use reference_only file context")
return False
self.logger.info(" ✅ Step 1: reference_only file context")
# Step 2: Expand investigation
self.logger.info(" 1.6.2: Step 2 - Expand investigation")
response2, _ = self.call_mcp_tool(
"debug",
{
"step": "Found configuration issue - investigating database server initialization",
"step_number": 2,
"total_steps": 4,
"next_step_required": True,
"continuation_id": continuation_id,
"findings": "MAX_CONNECTIONS environment variable contains invalid value, causing CACHE_SIZE calculation to fail",
"files_checked": [config_file, server_file],
"relevant_files": [config_file, server_file],
"relevant_context": ["DatabaseServer.__init__"],
"hypothesis": "Invalid environment variable causing integer conversion error",
"confidence": "medium",
"model": "flash",
},
)
if not response2:
self.logger.error("Failed to continue to step 2")
return False
response2_data = self._parse_debug_response(response2)
# Validate step 2 - should still use reference_only
file_context2 = response2_data.get("file_context", {})
if file_context2.get("type") != "reference_only":
self.logger.error("Step 2 should use reference_only file context")
return False
# Should reference both files
reference_note = file_context2.get("note", "")
if "config.py" not in reference_note or "database_server.py" not in reference_note:
self.logger.error("Step 2 should reference both files in note")
return False
self.logger.info(" ✅ Step 2: reference_only file context with multiple files")
# Step 3: Deep analysis
self.logger.info(" 1.6.3: Step 3 - Deep analysis")
response3, _ = self.call_mcp_tool(
"debug",
{
"step": "Analyzing the exact error propagation path and impact",
"step_number": 3,
"total_steps": 4,
"next_step_required": True,
"continuation_id": continuation_id,
"findings": "Error occurs in config.py line 8 when MAX_CONNECTIONS is not numeric, then propagates to DatabaseServer.__init__",
"files_checked": [config_file, server_file],
"relevant_files": [config_file, server_file],
"relevant_context": ["DatabaseServer.__init__"],
"hypothesis": "Need proper error handling and validation for environment variables",
"confidence": "high",
"model": "flash",
},
)
if not response3:
self.logger.error("Failed to continue to step 3")
return False
response3_data = self._parse_debug_response(response3)
# Validate step 3 - should still use reference_only
file_context3 = response3_data.get("file_context", {})
if file_context3.get("type") != "reference_only":
self.logger.error("Step 3 should use reference_only file context")
return False
self.logger.info(" ✅ Step 3: reference_only file context")
# Step 4: Final analysis with expert consultation
self.logger.info(" 1.6.4: Step 4 - Final step with expert analysis")
response4, _ = self.call_mcp_tool(
"debug",
{
"step": "Investigation complete - root cause identified with solution",
"step_number": 4,
"total_steps": 4,
"next_step_required": False, # Final step - should embed files
"continuation_id": continuation_id,
"findings": "Root cause: config.py assumes MAX_CONNECTIONS env var is always a valid integer. Fix: add try/except with default value and proper validation.",
"files_checked": [config_file, server_file],
"relevant_files": [config_file, server_file],
"relevant_context": ["DatabaseServer.__init__"],
"hypothesis": "Environment variable validation needed with proper error handling",
"confidence": "high",
"model": "flash",
},
)
if not response4:
self.logger.error("Failed to complete to final step")
return False
response4_data = self._parse_debug_response(response4)
# Validate step 4 - should use fully_embedded for expert analysis
file_context4 = response4_data.get("file_context", {})
if file_context4.get("type") != "fully_embedded":
self.logger.error("Step 4 (final) should use fully_embedded file context")
return False
if "expert analysis" not in file_context4.get("context_optimization", "").lower():
self.logger.error("Final step should mention expert analysis in context optimization")
return False
# Verify expert analysis was triggered
if response4_data.get("status") != "calling_expert_analysis":
self.logger.error("Final step should trigger expert analysis")
return False
# Check that expert analysis has file context
expert_analysis = response4_data.get("expert_analysis", {})
if not expert_analysis:
self.logger.error("Expert analysis should be present in final step")
return False
self.logger.info(" ✅ Step 4: fully_embedded file context with expert analysis")
# Validate the complete workflow progression
progression_summary = {
"step_1": "reference_only (new conversation, intermediate)",
"step_2": "reference_only (continuation, intermediate)",
"step_3": "reference_only (continuation, intermediate)",
"step_4": "fully_embedded (continuation, final)",
}
self.logger.info(" 📋 File context progression:")
for step, context_type in progression_summary.items():
self.logger.info(f" {step}: {context_type}")
self.logger.info(" ✅ Multi-step file context optimization test completed successfully")
return True
except Exception as e:
self.logger.error(f"Multi-step file context test failed: {e}")
return False