Skip to main content
Glama
Arize-ai

@arizeai/phoenix-mcp

Official
by Arize-ai
evaluate_code_functionality_classifications.ipynbβ€’62.2 kB
{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "xjgDyfmL6hB_" }, "source": [ "<center>\n", " <p style=\"text-align:center\">\n", " <img alt=\"phoenix logo\" src=\"https://storage.googleapis.com/arize-assets/phoenix/assets/phoenix-logo-light.svg\" width=\"200\"/>\n", " <br>\n", " <a href=\"https://arize.com/docs/phoenix/\">Docs</a>\n", " |\n", " <a href=\"https://github.com/Arize-ai/phoenix\">GitHub</a>\n", " |\n", " <a href=\"https://arize-ai.slack.com/join/shared_invite/zt-2w57bhem8-hq24MB6u7yE_ZF_ilOYSBw#/shared-invite/email\">Community</a>\n", " </p>\n", "</center>\n", "<h1 align=\"center\">Code Functionality Evals</h1>\n", "\n", "\n", "This tests whether code is written correctly, without bugs, accomplishes the functionality you want, does not have syntax errors.\n", "\n", "The purpose of this notebook is:\n", "\n", "- to evaluate the performance of code fuctionality Eval\n", "- to provide an experimental framework for users to iterate and improve on the default classification template.\n", "\n", "## Install Dependencies and Import Libraries" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "R8pDe5eG6hCJ", "outputId": "724b67f8-9d0f-41cd-f212-570d2484c5a0" }, "outputs": [], "source": [ "%pip install -qq arize-phoenix \"openai>=1\" ipython matplotlib pycm scikit-learn tiktoken nest_asyncio 'httpx<0.28'" ] }, { "cell_type": "markdown", "metadata": { "id": "h2ctpohg6hCK" }, "source": [ "ℹ️ To enable async request submission in notebook environments like Jupyter or Google Colab, optionally use `nest_asyncio`. `nest_asyncio` globally patches `asyncio` to enable event loops to be re-entrant. This is not required for non-notebook environments.\n", "\n", "Without `nest_asyncio`, eval submission can be much slower, depending on your organization's rate limits. Speed increases of about 5x are typical." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "WHnAJf1g6hCL" }, "outputs": [], "source": [ "import nest_asyncio\n", "\n", "nest_asyncio.apply()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "0bNZhOO46hCL", "outputId": "1980d240-5319-4d13-ea10-e2d745920d14" }, "outputs": [], "source": [ "import os\n", "from getpass import getpass\n", "\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "from pycm import ConfusionMatrix\n", "from sklearn.metrics import classification_report\n", "\n", "from phoenix.evals import (\n", " create_classifier,\n", " evaluate_dataframe,\n", ")\n", "\n", "pd.set_option(\"display.max_colwidth\", None)" ] }, { "cell_type": "markdown", "metadata": { "id": "mvrJ8sQK6hCM" }, "source": [ "## Download Benchmark Dataset" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 536 }, "id": "o-BbInt76hCN", "outputId": "b87d1f6f-8bbf-419e-fb19-61c9297caa06" }, "outputs": [], "source": [ "df = pd.read_csv(\n", " \"https://storage.googleapis.com/arize-assets/phoenix/evals/code-functionality/validated_python_code_samples_2.csv\"\n", ")\n", "\n", "df.head()" ] }, { "cell_type": "markdown", "metadata": { "id": "khGGD8hN6hCP" }, "source": [ "\n", "## Display Code Functionality Classification Template\n", "\n", "View the default template used to code functionality. You can tweak this template and evaluate its performance relative to the default." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "BQAEPJJn7vcj" }, "outputs": [], "source": [ "CODE_FUNCTIONALITY_PROMPT_TEMPLATE = \"\"\"\n", "Code Evaluation Prompt:\n", "-----------------------\n", "Evaluate the provided code to determine its correctness in solving the given instruction.\n", "\n", "Data:\n", "-----\n", "[Instruction]: {coding_instruction}\n", " Clearly define the task or problem that the code aims to address.\n", "\n", "[Reference Code]: {code}\n", " Examine the submitted code for evaluation in the context of the provided instruction.\n", "\n", "Evaluation:\n", "-----------\n", "Provide a concise response with a single word: either \"bug_free\" or \"is_bug\".\n", "- \"bug_free\" signifies that the code correctly and efficiently solves the instruction with no bugs.\n", "- \"is_bug\" indicates that the code either fails the instruction requirements or contains bugs.\n", "\n", "Example:\n", "-----------\n", "\n", "[Instruction]: Implement the Fibonacci sequence in Python.\n", "\n", "[Reference Code]: 'def fibonacci(n):\\n if n <= 1:\\n return n\\n else:\\n return\n", "fibonacci(n - 1) + fibonacci(n - 2)\\n\\nfor i in range(10):\\n print(fibonacci(i))'\n", "\n", "[Output]: bug_free\n", "\n", "Note: Assumptions can be made that any code needed for the instruction is correct, and optimization\n", "is not a requirement for a correct solution. Your response should consist solely of the words\n", "\"bug_free\" or \"is_bug\" without additional text or characters.\n", "\"\"\"\n", "\n", "CODE_FUNCTIONALITY_PROMPT_RAILS_MAP = {\"bug_free\": 1, \"is_bug\": 0}" ] }, { "cell_type": "markdown", "metadata": { "id": "505OyTtx6hCQ" }, "source": [ "The template variables are:\n", "\n", "- **coding_instruction:** What is the code supposed to do as an instruction\n", "- **code:** The code to evaluate \n" ] }, { "cell_type": "markdown", "metadata": { "id": "cWTzktuj6hCQ" }, "source": [ "## Configure the LLM\n", "\n", "Configure your OpenAI API key." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Hq-KlIVH6hCQ", "outputId": "3b978aaa-183d-489a-afb8-e37db1cb2110" }, "outputs": [], "source": [ "if not (openai_api_key := os.getenv(\"OPENAI_API_KEY\")):\n", " openai_api_key = getpass(\"πŸ”‘ Enter your OpenAI API key: \")\n", "os.environ[\"OPENAI_API_KEY\"] = openai_api_key" ] }, { "cell_type": "markdown", "metadata": { "id": "aNybVoRm6hCR" }, "source": [ "## Benchmark Dataset Sample\n", "Sample size determines run time\n", "Recommend iterating small: 100 samples\n", "Then increasing to large test set" ] }, { "cell_type": "markdown", "metadata": { "id": "MSOJ9_2_6hCR" }, "source": [ "## LLM Evals: Code Functionality Classifications GPT-4\n", "Run Code Functionality against a subset of the data.\n", "Instantiate the LLM and set parameters." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "rQ4dZYfS6hCS", "outputId": "cb3b06db-0170-4ae2-d1ea-1440dcc66922" }, "outputs": [], "source": [ "from phoenix.evals.llm import LLM\n", "\n", "model = LLM(provider=\"openai\", model=\"gpt-4\")" ] }, { "cell_type": "markdown", "metadata": { "id": "7oLPjvr36hCT" }, "source": [ "## Run Code Func Classifications\n", "\n", "Run code functionality classifications against a subset of the data." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 49, "referenced_widgets": [ "8763982494d64e97bf50204d4b8beca3", "34e87b1773004b83ae4f227a2ec4e504", "b5914f9bde894147a126f2552c68212c", "a508ddd770e44356a773d94ab8fcf977", "bb44d964d93642b9946253033c3d9e94", "8b4a5af6f76d431d8570e7400f8086fd", "a9933a0bab7f496fa2527f1abd4f2807", "2eefae02445a4b1e9aad8fdc47a63572", "ca3b583f7f5845f3b0cf197ac1b63976", "568d5c22695a4108b3b0c27119cbf97e", "f55ce1255e3f4dc6aab23b448a5c7574" ] }, "id": "Q2592lfO6hCU", "outputId": "5e200b64-d312-4f9a-9c22-7abe4cf96883" }, "outputs": [], "source": [ "code_functionality_eval = create_classifier(\n", " name=\"code functionality\",\n", " prompt_template=CODE_FUNCTIONALITY_PROMPT_TEMPLATE,\n", " llm=model,\n", " choices={\"bug_free\": 1, \"is_bug\": 0},\n", ")\n", "\n", "results_df = evaluate_dataframe(dataframe=df, evaluators=[code_functionality_eval])\n", "\n", "allLabels = results_df[\"code functionality_score\"].apply(\n", " lambda x: x.get(\"label\") if isinstance(x, dict) else None\n", ")\n", "\n", "allLabels.tolist()" ] }, { "cell_type": "markdown", "metadata": { "id": "ImqyWlGw6hCV" }, "source": [ "## Evaluate Classifications\n", "\n", "Evaluate the predictions against human-labeled ground-truth code functionality labels." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 651 }, "id": "8Ls9n2S76hCW", "outputId": "d4167fe4-2260-4b92-dd39-0bbe7f921ef3" }, "outputs": [], "source": [ "true_labels = df[\"is_well_coded\"].map(CODE_FUNCTIONALITY_PROMPT_RAILS_MAP).tolist()\n", "\n", "print(classification_report(true_labels, allLabels, labels=[\"bug_free\", \"is_bug\"]))\n", "confusion_matrix = ConfusionMatrix(\n", " actual_vector=true_labels, predict_vector=allLabels, classes=[\"bug_free\", \"is_bug\"]\n", ")\n", "confusion_matrix.plot(\n", " cmap=plt.colormaps[\"Blues\"],\n", " number_label=True,\n", " normalized=True,\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "w5ZJV1IC6hCX" }, "source": [ "## Classifications with explanations\n", "\n", "When evaluating a dataset for code functionality, it can be useful to know why the LLM classified a document as relevant or irrelevant. The following code block runs `llm_classify` with explanations turned on so that we can inspect why the LLM made the classification it did. There is speed tradeoff since more tokens is being generated but it can be highly informative when troubleshooting." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "CODE_FUNCTIONALITY_PROMPT_TEMPLATE_WITH_EXPLANATION = \"\"\"\n", "Code Evaluation Prompt:\n", "-----------------------\n", "Evaluate the provided code to determine its correctness in solving the given instruction.\n", "\n", "Data:\n", "-----\n", "[Instruction]: {coding_instruction}\n", " Clearly define the task or problem that the code aims to address.\n", "\n", "[Reference Code]: {code}\n", " Examine the submitted code for evaluation in the context of the provided instruction.\n", "\n", "Evaluation:\n", "-----------\n", "Provide a concise response with a explanation and a single word LABEL: either \"bug_free\" or\n", "\"is_bug\".\n", "- \"bug_free\" signifies that the code correctly and efficiently solves the instruction with no bugs.\n", "- \"is_bug\" indicates that the code either fails to meet the instruction requirements or contains\n", "bugs.\n", "\n", "Example:\n", "-----------\n", "\n", "[Instruction]: Implement the Fibonacci sequence in Python.\n", "\n", "[Reference Code]: 'def fibonacci(n):\\n if n <= 1:\\n return n\\n else:\\n return\n", "fibonacci(n - 1) + fibonacci(n - 2)\\n\\nfor i in range(10):\\n print(fibonacci(i))'\n", "\n", "[Output]: bug_free\n", "\n", "Note: Assumptions can be made that any code needed for the instruction is correct, and optimization\n", "is not a requirement for a correct solution. Your response should consist solely of the words\n", "\"bug_free\" or \"is_bug\" without additional text or characters.\n", "\n", "Please read the instruction and code carefully, then write out in a step by step manner an\n", "EXPLANATION to show how to evaluate the functionality of the code. Avoid simply stating the correct\n", "answer at the outset.\n", "You are then going to respond with a LABEL (a single word evaluation).\n", "If the reference code functionally solves the instruction problem without any bugs than call it\n", "\"bug_free\".\n", "If reference code has bugs or does not functionally solve the instruction problem than call it\n", "\"is_bug\".\n", "\n", "Example response:\n", "************\n", "EXPLANATION: An explanation of your reasoning for why the code is bug_free or is_bug\n", "LABEL: \"bug_free\" or \"is_bug\"\n", "************\n", "\n", "EXPLANATION:\n", "\"\"\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 873, "referenced_widgets": [ "1f7c7ce2ea874835986c9988bc062d82", "bb5911202039461b98517aba47f7e656", "3357650b34ed48848c6aec68957a9654", "5b85cf639b5c4a0cb5e4acff52a58ae8", "b5440442ff814c69ab5409ec55b16a4e", "0d06c9bac593459e8b4349697b60fd45", "5ccf1ab7cc164b6cb0c12b99dbd526e1", "6f96f9c08c6742429e31e35b5b5e9c45", "861dc30d89d846c6a6f5c1b5398b877c", "90253079c26747df99af818a9edabf36", "e8071c5ea332447c894cd34bee283ab2" ] }, "id": "DwS_xRu-6hCY", "outputId": "8b6783fe-6ff3-4a18-e363-a3bc5238bce6" }, "outputs": [], "source": [ "small_df_sample = df.copy().sample(n=5).reset_index(drop=True)\n", "\n", "\n", "code_functionality_eval = create_classifier(\n", " name=\"code functionality\",\n", " prompt_template=CODE_FUNCTIONALITY_PROMPT_TEMPLATE_WITH_EXPLANATION,\n", " llm=model,\n", " choices={\"bug_free\": 1, \"is_bug\": 0},\n", ")\n", "\n", "results_df = evaluate_dataframe(dataframe=small_df_sample, evaluators=[code_functionality_eval])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "Kz0R9iIO6hCY", "outputId": "9413f186-6c65-4f0b-a1a7-23d903c4bd9d" }, "outputs": [], "source": [ "# Let's view the data\n", "merged_df = pd.merge(small_df_sample, results_df, left_index=True, right_index=True)\n", "merged_df[[\"coding_instruction\", \"code\", \"label\", \"explanation\"]].head()" ] }, { "cell_type": "markdown", "metadata": { "id": "cHNsvloA6hCZ" }, "source": [ "## LLM Evals: code functionality Classifications GPT-3.5 Turbo\n", "Run Code functionality against a subset of the data using GPT-3.5. GPT-3.5 can significantly speed up the classification process. However there are tradeoffs as we will see below." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "jiQ9LvpU6hCZ", "outputId": "6054cdec-f39b-406c-870b-47cd296e56c9" }, "outputs": [], "source": [ "model = LLM(provider=\"openai\", model=\"gpt-3.5-turbo\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "code_functionality_eval = create_classifier(\n", " name=\"code functionality\",\n", " prompt_template=CODE_FUNCTIONALITY_PROMPT_TEMPLATE,\n", " llm=model,\n", " choices={\"bug_free\": 1, \"is_bug\": 0},\n", ")\n", "\n", "relevance_classifications = evaluate_dataframe(dataframe=df, evaluators=[code_functionality_eval])\n", "\n", "relevance_classifications = relevance_classifications[\"code functionality_score\"].apply(\n", " lambda x: x.get(\"label\") if isinstance(x, dict) else None\n", ")\n", "\n", "relevance_classifications.tolist()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 651 }, "id": "V6L35oYA6hCa", "outputId": "c147f626-389b-4356-bbb4-6f5a50a83902" }, "outputs": [], "source": [ "true_labels = df[\"is_well_coded\"].map(CODE_FUNCTIONALITY_PROMPT_RAILS_MAP).tolist()\n", "\n", "print(classification_report(true_labels, relevance_classifications, labels=[\"bug_free\", \"is_bug\"]))\n", "confusion_matrix = ConfusionMatrix(\n", " actual_vector=true_labels,\n", " predict_vector=relevance_classifications,\n", " classes=[\"bug_free\", \"is_bug\"],\n", ")\n", "confusion_matrix.plot(\n", " cmap=plt.colormaps[\"Blues\"],\n", " number_label=True,\n", " normalized=True,\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "zCu7LB4z6hCa" }, "source": [ "## Preview: Running with GPT-4 Turbo" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 67, "referenced_widgets": [ "eaf0c8354fc24e4aa228525639793107", "8499388789c04cf19e29279e9bc9c468", "6bfc17ec2fcd4cd4b2d250743590ca19", "554fa6afa4144418b9e7ae200ad12b91", "bb8d73f1129146c9809dd05ec848fb49", "14b484f8c5b84a248cfd6c7e584bb182", "4124a8afe45246fd811064e63a55fd6d", "34cdb200856f42f7bf6317022bc5b0f5", "89c44f8d9ad54370b75eacd7e83a4a70", "2ce2cdff3299422889b49b5107071a7b", "6490726f2b024d1d8bbedc36adbd7aa6" ] }, "id": "jTN1nIqP6hCa", "outputId": "7aa1f761-01c3-4675-dc5d-3074ca767d2b" }, "outputs": [], "source": [ "model = LLM(provider=\"openai\", model=\"gpt-4-1106-preview\")\n", "\n", "code_functionality_eval = create_classifier(\n", " name=\"code functionality\",\n", " prompt_template=CODE_FUNCTIONALITY_PROMPT_TEMPLATE,\n", " llm=model,\n", " choices={\"bug_free\": 1, \"is_bug\": 0},\n", ")\n", "\n", "classifications = evaluate_dataframe(dataframe=df, evaluators=[code_functionality_eval])\n", "classifications = classifications[\"code functionality_score\"].apply(\n", " lambda x: x.get(\"label\") if isinstance(x, dict) else None\n", ")\n", "\n", "classifications.tolist()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 651 }, "id": "dpaZ71bK6hCb", "outputId": "e77451db-27dc-48c3-b265-d7b58c0478e3" }, "outputs": [], "source": [ "true_labels = df[\"is_well_coded\"].map(CODE_FUNCTIONALITY_PROMPT_RAILS_MAP).tolist()\n", "\n", "print(classification_report(true_labels, classifications, labels=[\"bug_free\", \"is_bug\"]))\n", "confusion_matrix = ConfusionMatrix(\n", " actual_vector=true_labels, predict_vector=classifications, classes=[\"bug_free\", \"is_bug\"]\n", ")\n", "confusion_matrix.plot(\n", " cmap=plt.colormaps[\"Blues\"],\n", " number_label=True,\n", " normalized=True,\n", ")" ] } ], "metadata": { "colab": { "provenance": [] }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "0d06c9bac593459e8b4349697b60fd45": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "14b484f8c5b84a248cfd6c7e584bb182": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "19d2b7ed9b3949adbf9430b40c690800": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_dafe7d73cdb54b52a74596dd8d07ef2d", "placeholder": "​", "style": "IPY_MODEL_60d5450863e64e36975beda2392ef80a", "value": " 50/50 (100.0%) | ⏳ 00:10&lt;00:00 |  3.61it/s" } }, "1f7c7ce2ea874835986c9988bc062d82": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_bb5911202039461b98517aba47f7e656", "IPY_MODEL_3357650b34ed48848c6aec68957a9654", "IPY_MODEL_5b85cf639b5c4a0cb5e4acff52a58ae8" ], "layout": "IPY_MODEL_b5440442ff814c69ab5409ec55b16a4e" } }, "2ce2cdff3299422889b49b5107071a7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2eefae02445a4b1e9aad8fdc47a63572": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3357650b34ed48848c6aec68957a9654": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6f96f9c08c6742429e31e35b5b5e9c45", "max": 5, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_861dc30d89d846c6a6f5c1b5398b877c", "value": 5 } }, "34cdb200856f42f7bf6317022bc5b0f5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "34e87b1773004b83ae4f227a2ec4e504": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8b4a5af6f76d431d8570e7400f8086fd", "placeholder": "​", "style": "IPY_MODEL_a9933a0bab7f496fa2527f1abd4f2807", "value": "llm_classify " } }, "4124a8afe45246fd811064e63a55fd6d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "554fa6afa4144418b9e7ae200ad12b91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2ce2cdff3299422889b49b5107071a7b", "placeholder": "​", "style": "IPY_MODEL_6490726f2b024d1d8bbedc36adbd7aa6", "value": " 50/50 (100.0%) | ⏳ 00:10&lt;00:00 |  4.06it/s" } }, "568d5c22695a4108b3b0c27119cbf97e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5b85cf639b5c4a0cb5e4acff52a58ae8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_90253079c26747df99af818a9edabf36", "placeholder": "​", "style": "IPY_MODEL_e8071c5ea332447c894cd34bee283ab2", "value": " 5/5 (100.0%) | ⏳ 00:09&lt;00:00 |  1.08it/s" } }, "5ccf1ab7cc164b6cb0c12b99dbd526e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "60d5450863e64e36975beda2392ef80a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "62fd28d79b6d4bae912756a47d1450f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_be64e987f1a547bdb9196b30bae0c2a2", "IPY_MODEL_d0bc41ba95514e56b13bb6da23c26bd3", "IPY_MODEL_19d2b7ed9b3949adbf9430b40c690800" ], "layout": "IPY_MODEL_a78025bd35c84f3793772fd38872bbf3" } }, "6490726f2b024d1d8bbedc36adbd7aa6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "6bfc17ec2fcd4cd4b2d250743590ca19": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_34cdb200856f42f7bf6317022bc5b0f5", "max": 50, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_89c44f8d9ad54370b75eacd7e83a4a70", "value": 50 } }, "6f96f9c08c6742429e31e35b5b5e9c45": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8499388789c04cf19e29279e9bc9c468": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_14b484f8c5b84a248cfd6c7e584bb182", "placeholder": "​", "style": "IPY_MODEL_4124a8afe45246fd811064e63a55fd6d", "value": "llm_classify " } }, "861dc30d89d846c6a6f5c1b5398b877c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "8763982494d64e97bf50204d4b8beca3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_34e87b1773004b83ae4f227a2ec4e504", "IPY_MODEL_b5914f9bde894147a126f2552c68212c", "IPY_MODEL_a508ddd770e44356a773d94ab8fcf977" ], "layout": "IPY_MODEL_bb44d964d93642b9946253033c3d9e94" } }, "89c44f8d9ad54370b75eacd7e83a4a70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "8b4a5af6f76d431d8570e7400f8086fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "90253079c26747df99af818a9edabf36": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a508ddd770e44356a773d94ab8fcf977": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_568d5c22695a4108b3b0c27119cbf97e", "placeholder": "​", "style": "IPY_MODEL_f55ce1255e3f4dc6aab23b448a5c7574", "value": " 50/50 (100.0%) | ⏳ 00:33&lt;00:00 |  7.50it/s" } }, "a78025bd35c84f3793772fd38872bbf3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a9933a0bab7f496fa2527f1abd4f2807": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "b5440442ff814c69ab5409ec55b16a4e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b5914f9bde894147a126f2552c68212c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2eefae02445a4b1e9aad8fdc47a63572", "max": 50, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_ca3b583f7f5845f3b0cf197ac1b63976", "value": 50 } }, "bb44d964d93642b9946253033c3d9e94": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bb5911202039461b98517aba47f7e656": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0d06c9bac593459e8b4349697b60fd45", "placeholder": "​", "style": "IPY_MODEL_5ccf1ab7cc164b6cb0c12b99dbd526e1", "value": "llm_classify " } }, "bb8d73f1129146c9809dd05ec848fb49": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "be64e987f1a547bdb9196b30bae0c2a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ff7320e39af3418483200597313e3a9f", "placeholder": "​", "style": "IPY_MODEL_e5e348e67d674c77bf5b33643b2ae9ee", "value": "llm_classify " } }, "ca3b583f7f5845f3b0cf197ac1b63976": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "d0bc41ba95514e56b13bb6da23c26bd3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_efbd10c59abd49e0becbb8e17c6c046f", "max": 50, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_dc58c35b2e554e0aa0689e3eb8c36e75", "value": 50 } }, "dafe7d73cdb54b52a74596dd8d07ef2d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "dc58c35b2e554e0aa0689e3eb8c36e75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "e5e348e67d674c77bf5b33643b2ae9ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "e8071c5ea332447c894cd34bee283ab2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "eaf0c8354fc24e4aa228525639793107": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_8499388789c04cf19e29279e9bc9c468", "IPY_MODEL_6bfc17ec2fcd4cd4b2d250743590ca19", "IPY_MODEL_554fa6afa4144418b9e7ae200ad12b91" ], "layout": "IPY_MODEL_bb8d73f1129146c9809dd05ec848fb49" } }, "efbd10c59abd49e0becbb8e17c6c046f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f55ce1255e3f4dc6aab23b448a5c7574": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "ff7320e39af3418483200597313e3a9f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } } } } }, "nbformat": 4, "nbformat_minor": 0 }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arize-ai/phoenix'

If you have feedback or need assistance with the MCP directory API, please join our Discord server