import { DOCUMENT_RELEVANCE_CLASSIFICATION_EVALUATOR_CONFIG } from "../__generated__/default_templates";
import { CreateClassificationEvaluatorArgs } from "../types/evals";
import { ClassificationEvaluator } from "./ClassificationEvaluator";
import { createClassificationEvaluator } from "./createClassificationEvaluator";
export interface DocumentRelevanceEvaluatorArgs<
RecordType extends Record<
string,
unknown
> = DocumentRelevanceEvaluationRecord,
> extends Omit<
CreateClassificationEvaluatorArgs<RecordType>,
"promptTemplate" | "choices" | "optimizationDirection" | "name"
> {
optimizationDirection?: CreateClassificationEvaluatorArgs<RecordType>["optimizationDirection"];
name?: CreateClassificationEvaluatorArgs<RecordType>["name"];
choices?: CreateClassificationEvaluatorArgs<RecordType>["choices"];
promptTemplate?: CreateClassificationEvaluatorArgs<RecordType>["promptTemplate"];
}
/**
* A record to be evaluated by the document relevance evaluator.
*/
export interface DocumentRelevanceEvaluationRecord {
input: string;
documentText: string;
[key: string]: unknown;
}
/**
* Creates a document relevance evaluator function.
*
* This function returns an evaluator that determines whether a given document text
* is relevant to a provided input question. The evaluator uses a classification model
* and a prompt template to make its determination.
*
* @param args - The arguments for creating the document relevance evaluator.
* @param args.model - The model to use for classification.
* @param args.choices - The possible classification choices (defaults to DOCUMENT_RELEVANCE_CHOICES).
* @param args.promptTemplate - The prompt template to use (defaults to DOCUMENT_RELEVANCE_TEMPLATE).
* @param args.telemetry - The telemetry to use for the evaluator.
*
* @returns An evaluator function that takes a {@link DocumentRelevanceExample} and returns a classification result
* indicating whether the document is relevant to the input question.
*
* @example
* ```ts
* const evaluator = createDocumentRelevanceEvaluator({ model: openai("gpt-4o-mini") });
* const result = await evaluator.evaluate({
* input: "What is the capital of France?",
* documentText: "Paris is the capital and most populous city of France.",
* });
* console.log(result.label); // "relevant" or "unrelated"
* ```
*/
export function createDocumentRelevanceEvaluator<
RecordType extends Record<
string,
unknown
> = DocumentRelevanceEvaluationRecord,
>(
args: DocumentRelevanceEvaluatorArgs<RecordType>
): ClassificationEvaluator<RecordType> {
const {
choices = DOCUMENT_RELEVANCE_CLASSIFICATION_EVALUATOR_CONFIG.choices,
promptTemplate = DOCUMENT_RELEVANCE_CLASSIFICATION_EVALUATOR_CONFIG.template,
optimizationDirection = DOCUMENT_RELEVANCE_CLASSIFICATION_EVALUATOR_CONFIG.optimizationDirection,
name = DOCUMENT_RELEVANCE_CLASSIFICATION_EVALUATOR_CONFIG.name,
...rest
} = args;
return createClassificationEvaluator<RecordType>({
...rest,
promptTemplate,
choices,
optimizationDirection,
name,
});
}