# Manual Instrumentation (Python)
Add custom spans using decorators or context managers for fine-grained tracing control.
## Setup
```bash
pip install arize-phoenix-otel
```
```python
from phoenix.otel import register
tracer_provider = register(project_name="my-app")
tracer = tracer_provider.get_tracer(__name__)
```
## Quick Reference
| Span Kind | Decorator | Use Case |
|-----------|-----------|----------|
| CHAIN | `@tracer.chain` | Orchestration, workflows, pipelines |
| RETRIEVER | `@tracer.retriever` | Vector search, document retrieval |
| TOOL | `@tracer.tool` | External API calls, function execution |
| AGENT | `@tracer.agent` | Multi-step reasoning, planning |
| LLM | `@tracer.llm` | LLM API calls (manual only) |
| EMBEDDING | `@tracer.embedding` | Embedding generation |
| RERANKER | `@tracer.reranker` | Document re-ranking |
| GUARDRAIL | `@tracer.guardrail` | Safety checks, content moderation |
| EVALUATOR | `@tracer.evaluator` | LLM evaluation, quality checks |
## Decorator Approach (Recommended)
**Use for:** Full function instrumentation, automatic I/O capture
```python
@tracer.chain
def rag_pipeline(query: str) -> str:
docs = retrieve_documents(query)
ranked = rerank(docs, query)
return generate_response(ranked, query)
@tracer.retriever
def retrieve_documents(query: str) -> list[dict]:
results = vector_db.search(query, top_k=5)
return [{"content": doc.text, "score": doc.score} for doc in results]
@tracer.tool
def get_weather(city: str) -> str:
response = requests.get(f"https://api.weather.com/{city}")
return response.json()["weather"]
```
**Custom span names:**
```python
@tracer.chain(name="rag-pipeline-v2")
def my_workflow(query: str) -> str:
return process(query)
```
## Context Manager Approach
**Use for:** Partial function instrumentation, custom attributes, dynamic control
```python
from opentelemetry.trace import Status, StatusCode
import json
def retrieve_with_metadata(query: str):
with tracer.start_as_current_span(
"vector_search",
openinference_span_kind="retriever"
) as span:
span.set_attribute("input.value", query)
results = vector_db.search(query, top_k=5)
documents = [
{
"document.id": doc.id,
"document.content": doc.text,
"document.score": doc.score
}
for doc in results
]
span.set_attribute("retrieval.documents", json.dumps(documents))
span.set_status(Status(StatusCode.OK))
return documents
```
## See Also
- **Span attributes:** `span-chain.md`, `span-retriever.md`, `span-tool.md`, `span-llm.md`, `span-agent.md`, `span-embedding.md`, `span-reranker.md`, `span-guardrail.md`, `span-evaluator.md`
- **Auto-instrumentation:** `instrumentation-auto-python.md` for framework integrations
- **API docs:** https://docs.arize.com/phoenix/tracing/manual-instrumentation