# Production: Continuous Evaluation
Capability vs regression evals and the ongoing feedback loop.
## Two Types of Evals
| Type | Pass Rate Target | Purpose | Update |
| ---- | ---------------- | ------- | ------ |
| **Capability** | 50-80% | Measure improvement | Add harder cases |
| **Regression** | 95-100% | Catch breakage | Add fixed bugs |
## Saturation
When capability evals hit >95% pass rate, they're saturated:
1. Graduate passing cases to regression suite
2. Add new challenging cases to capability suite
## Feedback Loop
```
Production → Sample traffic → Run evaluators → Find failures
↑ ↓
Deploy ← Run CI evals ← Create test cases ← Error analysis
```
## Implementation
Build a continuous monitoring loop:
1. **Sample recent traces** at regular intervals (e.g., 100 traces per hour)
2. **Run evaluators** on sampled traces
3. **Log results** to Phoenix for tracking
4. **Queue concerning results** for human review
5. **Create test cases** from recurring failure patterns
## Alerting
| Condition | Severity | Action |
| --------- | -------- | ------ |
| Regression < 98% | Critical | Page oncall |
| Capability declining | Warning | Slack notify |
| Capability > 95% for 7d | Info | Schedule review |
## Key Principles
- **Two suites** - Capability + Regression always
- **Graduate cases** - Move consistent passes to regression
- **Track trends** - Monitor over time, not just snapshots