Skip to main content
Glama

@arizeai/phoenix-mcp

Official
by Arize-ai
tracing_an_agno_agent.ipynb7.98 kB
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "<center>\n", " <p style=\"text-align:center\">\n", " <img alt=\"phoenix logo\" src=\"https://raw.githubusercontent.com/Arize-ai/phoenix-assets/9e6101d95936f4bd4d390efc9ce646dc6937fb2d/images/socal/github-large-banner-phoenix.jpg\" width=\"1000\"/>\n", " <br>\n", " <br>\n", " <a href=\"https://arize.com/docs/phoenix/\">Docs</a>\n", " |\n", " <a href=\"https://github.com/Arize-ai/phoenix\">GitHub</a>\n", " |\n", " <a href=\"https://arize-ai.slack.com/join/shared_invite/zt-2w57bhem8-hq24MB6u7yE_ZF_ilOYSBw#/shared-invite/email\">Community</a>\n", " </p>\n", "</center>\n", "<h1 align=\"center\">Tracing an Agno Policy Research Agent</h1>" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!pip install -q agno duckduckgo-search newspaper4k lxml_html_clean openinference-instrumentation-agno openinference-instrumentation-openai openai arize-phoenix" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Connect to Phoenix" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For this example you'll use a hosted version of Phoenix - if you don't already have an account, you can create one for free [here](https://app.phoenix.arize.com/). If you'd prefer to self-host Phoenix, then follow the [instructions here](https://arize.com/docs/phoenix/self-hosting)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "from getpass import getpass\n", "\n", "if \"OPENAI_API_KEY\" not in os.environ:\n", " os.environ[\"OPENAI_API_KEY\"] = getpass(\"🔑 Enter your OpenAI API key: \")\n", "\n", "if \"PHOENIX_API_KEY\" not in os.environ:\n", " os.environ[\"PHOENIX_API_KEY\"] = getpass(\"🔑 Enter your Phoenix API key: \")\n", "\n", "if \"PHOENIX_COLLECTOR_ENDPOINT\" not in os.environ:\n", " os.environ[\"PHOENIX_COLLECTOR_ENDPOINT\"] = getpass(\"🔑 Enter your Phoenix Collector Endpoint\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from openinference.instrumentation.agno import AgnoInstrumentor\n", "from openinference.instrumentation.openai import OpenAIInstrumentor\n", "\n", "from phoenix.otel import register\n", "\n", "tracer_provider = register(project_name=\"agno\")\n", "AgnoInstrumentor().instrument(tracer_provider=tracer_provider)\n", "OpenAIInstrumentor().instrument(tracer_provider=tracer_provider)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Building your Agno Agent" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from textwrap import dedent\n", "\n", "from agno.agent import Agent\n", "from agno.models.openai import OpenAIChat\n", "from agno.tools.duckduckgo import DuckDuckGoTools\n", "from agno.tools.newspaper4k import Newspaper4kTools\n", "\n", "policy_research_agent = Agent(\n", " model=OpenAIChat(id=\"gpt-4o\"),\n", " tools=[DuckDuckGoTools(), Newspaper4kTools()],\n", " description=dedent(\"\"\"\\\n", " You are a senior policy analyst who advises G20 governments on the\n", " governance of advanced AI systems. Your expertise spans: 🌐\n", "\n", " • Comparative regulatory analysis (EU AI Act, U.S. EO, China’s draft regs)\n", " • Risk taxonomy & mitigation frameworks (NIST, ISO, OECD)\n", " • Multi‑stakeholder negotiation and diplomacy\n", " • Economic impact modelling and labour‑market studies\n", " • Standards‑setting processes (IEEE, ISO/IEC)\n", " • Enforcement mechanisms and audit requirements\n", " • Rights‑based and ethics‑based approaches to AI governance\\\n", " \"\"\"),\n", " instructions=dedent(\"\"\"\\\n", " 1. Discovery Phase 🔍\n", " – Gather at least 12 authoritative sources: legislation, white‑papers,\n", " peer‑reviewed studies, think‑tank reports, and reputable news.\n", " – Prioritise the most recent versions / amendments (≤ 12 months).\n", " – Identify divergent regional approaches and key stakeholders.\n", "\n", " 2. Comparative Analysis 📊\n", " – Map each region’s regulatory scope, risk tiers, and enforcement powers.\n", " – Cross‑reference impact assessments and economic forecasts.\n", " – Highlight areas of convergence and friction (e.g., foundation‑model audits).\n", "\n", " 3. Recommendation Draft ✍️\n", " – Craft a concise, actionable brief for policymakers.\n", " – Include trade‑offs, implementation timelines, and anticipated market effects.\n", " – Use bullet points and tables where clarity improves.\n", "\n", " 4. Validation & Quality Control ✓\n", " – Verify every cited statute / article for publication date and authenticity.\n", " – Ensure balanced representation of civil‑society and industry viewpoints.\n", " – Flag any major uncertainties or data gaps.\n", " \"\"\"),\n", " expected_output=dedent(\"\"\"\\\n", " # {Short, Punchy Headline on AI Governance Landscape} 🌐\n", "\n", " ## Executive Summary\n", " {One‑paragraph snapshot of regulatory momentum and stakes}\n", "\n", " | Region | Current Status | Key Provisions | Enforcement Timeline |\n", " |--------|---------------|----------------|----------------------|\n", " | EU | ... | ... | ... |\n", " | U.S. | ... | ... | ... |\n", " | ... | ... | ... | ... |\n", "\n", " ## Comparative Findings\n", " - **Risk Classification:** {...}\n", " - **Testing & Audit Requirements:** {...}\n", " - **Penalties & Incentives:** {...}\n", "\n", " ## Strategic Implications\n", " {Market, innovation, and compliance impacts for enterprises}\n", "\n", " ## Policy Recommendations\n", " 1. **Short‑Term (0‑12 mo):** {...}\n", " 2. **Medium‑Term (1‑3 yrs):** {...}\n", " 3. **Long‑Term (>3 yrs):** {...}\n", "\n", " ## Sources\n", " {Numbered list, each with publication date and 1‑line relevance note}\n", "\n", " ---\n", " Prepared by AI Policy Analyst · Published: {current_date} · Last Updated: {current_time}\n", " \"\"\"),\n", " markdown=True,\n", " show_tool_calls=True,\n", " add_datetime_to_instructions=True,\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "policy_research_agent.print_response(\n", " \"Analyze the current state and future implications of artificial intelligence regulation worldwide\",\n", " stream=True,\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## View your Traces in Phoenix!\n", "\n", "![traces in phoenix](https://storage.googleapis.com/arize-phoenix-assets/assets/images/agno-example-trace.png)" ] } ], "metadata": { "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 0 }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arize-ai/phoenix'

If you have feedback or need assistance with the MCP directory API, please join our Discord server