Skip to main content
Glama

@arizeai/phoenix-mcp

Official
by Arize-ai
test_span_json_decoder.py3.04 kB
from phoenix.trace.span_json_decoder import json_to_span def test_span_json_decoder_document_retrieval() -> None: span = json_to_span( { "name": "retrieve", "context": { "trace_id": "9241913b-eadf-4891-9e17-24686ccc3ed3", "span_id": "89ff67d5-1818-41b7-ab09-17bcc450491c", }, "span_kind": "RETRIEVER", "parent_id": "d493e9ab-321f-41ac-a1b2-60d80c50b2cb", "start_time": "2023-09-15T14:04:07.167267", "end_time": "2023-09-15T14:04:07.812851", "status_code": "OK", "status_message": "", "attributes": { "input.value": "How do I use the SDK to upload a ranking model?", "input.mime_type": "text/plain", "retrieval.documents": [ { "document.id": "883e74ee-691a-46e0-acd7-f58bd565dad4", "document.score": 0.8024018669959406, "document.content": """\nRanking models are used by search engines to display query results ranked in the order of the highest relevance. These predictions seek to maximize user actions that are then used to evaluate model performance. \n\nThe complexity within a ranking model makes failures challenging to pinpoint as a model\u2019s dimensions expand per recommendation. Notable challenges within ranking models include upstream data quality issues, poor-performing segments, the cold start problem, and more.  \n\n\n\n""", "document.metadata": {"category": "ranking"}, }, { "document.id": "d169f0ce-b5ea-4e88-9653-f8bb2fb1d105", "document.score": 0.7964861566463088, "document.content": """\n**Use the 'arize-demo-hotel-ranking' model, available in all free accounts, to follow along.** \n\n""", "document.metadata": {}, }, ], }, "events": [], "conversation": None, } ) assert span.name == "retrieve" assert len(span.attributes["retrieval.documents"]) == 2

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arize-ai/phoenix'

If you have feedback or need assistance with the MCP directory API, please join our Discord server