Skip to main content
Glama

@arizeai/phoenix-mcp

Official
by Arize-ai
test_scalar_drift.py2.88 kB
import numpy as np import pandas as pd from numpy.testing import assert_almost_equal from phoenix.core.model_schema import Column from phoenix.metrics import binning, metrics column_name = "x" reference_data = pd.DataFrame( { column_name: pd.Series( [-1, 0, 1, 2, 3, None, ""], dtype=object, ), } ) def test_psi_categorical_binning() -> None: metric = metrics.PSI( operand=Column(column_name), reference_data=reference_data, normalize=binning.AdditiveSmoothing(pseudocount=1), binning_method=binning.CategoricalBinning(), ) assert_almost_equal(0.0, metric(reference_data)) for i, desired_result in enumerate((0.0, 0.0743, 0.11, 0.1188, 0.108, 0.1777)): test_data = pd.DataFrame({column_name: pd.Series(range(i), dtype=int)}) actual_result = metric(test_data).round(4) assert_almost_equal( actual_result, desired_result, err_msg=f"i={i} test_data={test_data.loc[:, column_name].to_numpy()}", ) def test_psi_interval_binning() -> None: metric = metrics.PSI( operand=Column(column_name), reference_data=reference_data, normalize=binning.AdditiveSmoothing(pseudocount=1), binning_method=binning.IntervalBinning( bins=pd.IntervalIndex( ( pd.Interval(-np.inf, 1.0, closed="left"), pd.Interval(1.0, 2.0, closed="left"), pd.Interval(2.0, np.inf, closed="left"), ) ) ), ) assert_almost_equal(0.0, metric(reference_data)) for i, desired_result in enumerate((0.0276, 0.0956, 0.2085, 0.1321, 0.1715, 0.2474)): test_data = pd.DataFrame({column_name: pd.Series(range(i), dtype=int)}) actual_result = metric(test_data).round(4) assert_almost_equal( actual_result, desired_result, err_msg=f"i={i} test_data={test_data.loc[:, column_name].to_numpy()}", ) def test_psi_quantile_binning() -> None: metric = metrics.PSI( operand=Column(column_name), reference_data=reference_data, normalize=binning.AdditiveSmoothing(pseudocount=1), binning_method=binning.QuantileBinning( reference_series=reference_data.loc[:, column_name], probabilities=(0.25, 0.5, 0.75), ), ) assert_almost_equal(0.0, metric(reference_data)) for i, desired_result in enumerate((0.0405, 0.1831, 0.2519, 0.1662, 0.1911, 0.2542)): test_data = pd.DataFrame({column_name: pd.Series(range(i), dtype=int)}) actual_result = metric(test_data).round(4) assert_almost_equal( actual_result, desired_result, err_msg=f"i={i} test_data={test_data.loc[:, column_name].to_numpy()}", )

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arize-ai/phoenix'

If you have feedback or need assistance with the MCP directory API, please join our Discord server