Skip to main content
Glama

@arizeai/phoenix-mcp

Official
by Arize-ai
index.md3.78 kB
# Phoenix Evals Reference Welcome to the Phoenix Evals Reference documentation. This package provides evaluation tools and utilities for LLM applications, including tools to determine relevance, toxicity, hallucination detection, and much more. ## Features Phoenix Evals provides **lightweight, composable building blocks** for writing and running evaluations: - **Works with your preferred model SDKs** via adapters (OpenAI, LiteLLM, LangChain) - **Powerful input mapping and binding** for working with complex data structures - **Several pre-built metrics** for common evaluation tasks like hallucination detection - **Evaluators are natively instrumented** via OpenTelemetry tracing for observability and dataset curation - **Blazing fast performance** - achieve up to 20x speedup with built-in concurrency and batching - **Tons of convenience features** to improve the developer experience! ## Installation Install the Phoenix Evals package using pip: ```bash pip install 'arize-phoenix-evals>=2.0.0' openai ``` ## Quick Start ```python from phoenix.evals import create_classifier from phoenix.evals.llm import LLM # Create an LLM instance llm = LLM(provider="openai", model="gpt-4o") # Create an evaluator evaluator = create_classifier( name="helpfulness", prompt_template="Rate the response to the user query as helpful or not:\n\nQuery: {input}\nResponse: {output}", llm=llm, choices={"helpful": 1.0, "not_helpful": 0.0}, ) # Simple evaluation scores = evaluator.evaluate({"input": "How do I reset?", "output": "Go to settings > reset."}) scores[0].pretty_print() # With input mapping for nested data scores = evaluator.evaluate( {"data": {"query": "How do I reset?", "response": "Go to settings > reset."}}, input_mapping={"input": "data.query", "output": "data.response"} ) scores[0].pretty_print() ``` ## Core Functions The main evaluation functions that power the package: - **`create_classifier`**: Create LLM-based classification evaluators - **`create_evaluator`**: Create custom evaluators from functions - **`bind_evaluator`**: Bind evaluators with input mappings - **`evaluate_dataframe`**: Evaluate dataframes with multiple evaluators - **Legacy functions**: `llm_classify`, `llm_generate`, and `run_evals` (available in `phoenix.evals.legacy`) ## Usage Examples ```python import pandas as pd from phoenix.evals import create_classifier, evaluate_dataframe from phoenix.evals.llm import LLM # Create an LLM instance llm = LLM(provider="openai", model="gpt-4o") # Create evaluators relevance_evaluator = create_classifier( name="relevance", prompt_template="Is the response relevant to the query?\n\nQuery: {input}\nResponse: {output}", llm=llm, choices={"relevant": 1.0, "irrelevant": 0.0}, ) helpfulness_evaluator = create_classifier( name="helpfulness", prompt_template="Is the response helpful?\n\nQuery: {input}\nResponse: {output}", llm=llm, choices={"helpful": 1.0, "not_helpful": 0.0}, ) # Prepare your dataframe df = pd.DataFrame([ {"input": "How do I reset my password?", "output": "Go to settings > account > reset password."}, {"input": "What's the weather like?", "output": "I can help you with password resets."}, ]) # Evaluate the dataframe results_df = evaluate_dataframe( dataframe=df, evaluators=[relevance_evaluator, helpfulness_evaluator], ) print(results_df.head()) ``` ## External Links - [Main Phoenix Documentation](https://arize.com/docs/phoenix) - [Python Reference](https://arize-phoenix.readthedocs.io/) - [GitHub Repository](https://github.com/Arize-ai/phoenix) ## API Reference ```{toctree} :maxdepth: 2 :caption: API Reference api/evals api/legacy ``` ## Indices and tables - {ref}`genindex` - {ref}`modindex` - {ref}`search`

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arize-ai/phoenix'

If you have feedback or need assistance with the MCP directory API, please join our Discord server