Skip to main content
Glama

@arizeai/phoenix-mcp

Official
by Arize-ai
README.md4.27 kB
# arize-phoenix-evals <p align="center"> <a href="https://pypi.org/project/arize-phoenix-evals/"> <img src="https://img.shields.io/pypi/v/arize-phoenix-evals" alt="PyPI Version"> </a> <a href="https://arize-phoenix.readthedocs.io/projects/evals/en/latest/index.html"> <img src="https://img.shields.io/badge/docs-blue?logo=readthedocs&logoColor=white" alt="Documentation"> </a> </p> Phoenix Evals provides **lightweight, composable building blocks** for writing and running evaluations on LLM applications, including tools to determine relevance, toxicity, hallucination detection, and much more. ## Features - **Works with your preferred model SDKs** via adapters (OpenAI, LiteLLM, LangChain) - **Powerful input mapping and binding** for working with complex data structures - **Several pre-built metrics** for common evaluation tasks like hallucination detection - **Evaluators are natively instrumented** via OpenTelemetry tracing for observability and dataset curation - **Blazing fast performance** - achieve up to 20x speedup with built-in concurrency and batching - **Tons of convenience features** to improve the developer experience! ## Installation Install Phoenix Evals 2.0 using pip: ```shell pip install 'arize-phoenix-evals>=2.0.0' openai ``` ## Quick Start ```python from phoenix.evals import create_classifier from phoenix.evals.llm import LLM # Create an LLM instance llm = LLM(provider="openai", model="gpt-4o") # Create an evaluator evaluator = create_classifier( name="helpfulness", prompt_template="Rate the response to the user query as helpful or not:\n\nQuery: {input}\nResponse: {output}", llm=llm, choices={"helpful": 1.0, "not_helpful": 0.0}, ) # Simple evaluation scores = evaluator.evaluate({"input": "How do I reset?", "output": "Go to settings > reset."}) scores[0].pretty_print() # With input mapping for nested data scores = evaluator.evaluate( {"data": {"query": "How do I reset?", "response": "Go to settings > reset."}}, input_mapping={"input": "data.query", "output": "data.response"} ) scores[0].pretty_print() ``` ## Evaluating Dataframes ```python import pandas as pd from phoenix.evals import create_classifier, evaluate_dataframe from phoenix.evals.llm import LLM # Create an LLM instance llm = LLM(provider="openai", model="gpt-4o") # Create multiple evaluators relevance_evaluator = create_classifier( name="relevance", prompt_template="Is the response relevant to the query?\n\nQuery: {input}\nResponse: {output}", llm=llm, choices={"relevant": 1.0, "irrelevant": 0.0}, ) helpfulness_evaluator = create_classifier( name="helpfulness", prompt_template="Is the response helpful?\n\nQuery: {input}\nResponse: {output}", llm=llm, choices={"helpful": 1.0, "not_helpful": 0.0}, ) # Prepare your dataframe df = pd.DataFrame([ {"input": "How do I reset my password?", "output": "Go to settings > account > reset password."}, {"input": "What's the weather like?", "output": "I can help you with password resets."}, ]) # Evaluate the dataframe results_df = evaluate_dataframe( dataframe=df, evaluators=[relevance_evaluator, helpfulness_evaluator], ) print(results_df.head()) ``` ## Documentation - **[Full Documentation](https://arize-phoenix.readthedocs.io/projects/evals/en/latest/index.html)** - Complete API reference and guides - **[Phoenix Docs](https://arize.com/docs/phoenix)** - Detailed use-cases and examples - **[OpenInference](https://github.com/Arize-ai/openinference)** - Auto-instrumentation libraries for frameworks ## Community Join our community to connect with thousands of AI builders: - 🌍 Join our [Slack community](https://arize-ai.slack.com/join/shared_invite/zt-11t1vbu4x-xkBIHmOREQnYnYDH1GDfCg). - 📚 Read the [Phoenix documentation](https://arize.com/docs/phoenix). - 💡 Ask questions and provide feedback in the _#phoenix-support_ channel. - 🌟 Leave a star on our [GitHub](https://github.com/Arize-ai/phoenix). - 🐞 Report bugs with [GitHub Issues](https://github.com/Arize-ai/phoenix/issues). - 𝕏 Follow us on [𝕏](https://twitter.com/ArizePhoenix). - 🗺️ Check out our [roadmap](https://github.com/orgs/Arize-ai/projects/45) to see where we're heading next.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arize-ai/phoenix'

If you have feedback or need assistance with the MCP directory API, please join our Discord server