Skip to main content
Glama

@arizeai/phoenix-mcp

Official
by Arize-ai
createDataset.ts1.48 kB
import { createClient } from "../client"; import { ClientFn } from "../types/core"; import { Example } from "../types/datasets"; import invariant from "tiny-invariant"; export type CreateDatasetParams = ClientFn & { /** * The name of the dataset */ name: string; /** * The description of the dataset */ description: string; /** * The examples to create in the dataset */ examples: Example[]; }; export type CreateDatasetResponse = { datasetId: string; }; /** * Create a new dataset * @experimental this interface may change in the future */ export async function createDataset({ client: _client, name, description, examples, }: CreateDatasetParams): Promise<CreateDatasetResponse> { const client = _client || createClient(); const inputs = examples.map((example) => example.input); const outputs = examples.map((example) => example?.output ?? {}); // Treat null as an empty object const metadata = examples.map((example) => example?.metadata ?? {}); const createDatasetResponse = await client.POST("/v1/datasets/upload", { params: { query: { // TODO: parameterize this sync: true, }, }, body: { name, description, action: "create", inputs, outputs, metadata, }, }); invariant(createDatasetResponse.data?.data, "Failed to create dataset"); const datasetId = createDatasetResponse.data.data.dataset_id; return { datasetId, }; }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arize-ai/phoenix'

If you have feedback or need assistance with the MCP directory API, please join our Discord server