Skip to main content
Glama

@arizeai/phoenix-mcp

Official
by Arize-ai
quickstart-tracing-python.md2.67 kB
# Quickstart: Tracing (Python) ## Overview Phoenix supports three main options to collect traces: 1. Use [Phoenix's decorators](../how-to-tracing/setup-tracing/instrument-python.md) to mark functions and code blocks. 2. Use [automatic instrumentation](https://arize.com/docs/phoenix/integrations) to capture all calls made to supported frameworks. 3. Use [base OpenTelemetry](../how-to-tracing/setup-tracing/custom-spans.md) instrumentation. Supported in [Python](../how-to-tracing/setup-tracing/custom-spans.md) and [TS / JS](../how-to-tracing/setup-tracing/javascript.md), among many other languages. This example uses options 1 and 2. ## Launch Phoenix {% include "../../.gitbook/includes/launch-phoenix-python.md" %} ## Connect to Phoenix <a href="#connect-your-app" id="connect-your-app"></a> To collect traces from your application, you must configure an OpenTelemetry TracerProvider to send traces to Phoenix. ```bash pip install arize-phoenix-otel ``` ```python from phoenix.otel import register # configure the Phoenix tracer tracer_provider = register( project_name="my-llm-app", # Default is 'default' auto_instrument=True, # See 'Trace all calls made to a library' below ) tracer = tracer_provider.get_tracer(__name__) ``` ## Trace your own functions Functions can be traced using decorators: ```python @tracer.chain def my_func(input: str) -> str: return "output" ``` Input and output attributes are set automatically based on `my_func`'s parameters and return. ## Trace all calls made to a library Phoenix can also capture all calls made to supported libraries automatically. Just install the [respective OpenInference library](https://github.com/Arize-ai/openinference?tab=readme-ov-file#instrumentation): ``` pip install openinference-instrumentation-openai ``` {% hint style="warning" %} OpenInference libraries must be installed _**before**_ calling the register function {% endhint %} ```python # Add OpenAI API Key import os import openai os.environ["OPENAI_API_KEY"] = "ADD YOUR OPENAI API KEY" client = openai.OpenAI() response = client.chat.completions.create( model="gpt-4o", messages=[{"role": "user", "content": "Write a haiku."}], ) print(response.choices[0].message.content) ``` ## View your Traces in Phoenix You should now see traces in Phoenix! <figure><img src="../../.gitbook/assets/Screenshot 2024-10-29 at 2.51.24 PM.png" alt=""><figcaption></figcaption></figure> ## Next Steps * Explore tracing [integrations](https://arize.com/docs/phoenix/integrations) * [Customize tracing](../how-to-tracing/) * View use cases to see[ end-to-end examples](https://arize.com/docs/phoenix/cookbook/guide)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arize-ai/phoenix'

If you have feedback or need assistance with the MCP directory API, please join our Discord server