Skip to main content
Glama

@arizeai/phoenix-mcp

Official
by Arize-ai
qdrant.md2.7 kB
--- description: >- Qdrant is an open-source vector search engine built for high-dimensional vectors and large scale workflows --- # Qdrant <figure><img src="https://qdrant.tech/img/qdrant-logo.svg" alt="Qdrant Logo"><figcaption></figcaption></figure> **Website:** [qdrant.tech](https://qdrant.tech/) Qdrant is a fast, open-source vector search engine for building RAG applications and semantic search. Phoenix helps you trace and evaluate your Qdrant-powered applications to understand how well your vector searches are working. ## Quick Start ### 1. Run Qdrant with Docker ```bash docker run -p 6333:6333 qdrant/qdrant ``` ### 2. Install the Python client ```bash pip install qdrant-client phoenix ``` ### 3. Basic usage with Phoenix tracing ```python import phoenix as px from qdrant_client import QdrantClient from phoenix.otel import register # Start Phoenix px.launch_app() # Set up tracing tracer_provider = register(project_name="qdrant-app") tracer = tracer_provider.get_tracer(__name__) # Connect to Qdrant client = QdrantClient(host="localhost", port=6333) def search_documents(query_vector): """Search for similar documents""" with tracer.start_as_current_span("search_documents") as span: results = client.query_points( collection_name="my_docs", query=query_vector, limit=5 ).points span.set_attribute("result_count", len(results)) return results ``` ## Examples <table data-card-size="large" data-view="cards"><thead><tr><th></th><th></th><th data-hidden data-card-cover data-type="files"></th><th data-hidden data-card-target data-type="content-ref"></th></tr></thead><tbody><tr><td><strong>Complete Qdrant + LlamaIndex + Phoenix Tutorial</strong></td><td>Full tutorial showing dense and hybrid search with Qdrant, LlamaIndex, and Phoenix evaluation.</td><td><a href="../.gitbook/assets/Tutorials.jpg">Tutorials.jpg</a></td><td><a href="https://github.com/qdrant/qdrant-rag-eval/blob/a101fac6bbf93ae753ffcaa7d7c4eb940dae0464/workshop-rag-eval-qdrant-arize/notebooks/llama_qdrant_rag_phoenix.ipynb">https://github.com/qdrant/qdrant-rag-eval/blob/main/workshop-rag-eval-qdrant-arize/notebooks/llama_qdrant_rag_phoenix.ipynb</a></td></tr><tr><td><strong>LangChain Qdrant Example</strong></td><td>Simple LangChain + Qdrant example with Phoenix tracing.</td><td><a href="../.gitbook/assets/Tutorials.jpg">Tutorials.jpg</a></td><td><a href="https://github.com/Arize-ai/phoenix/blob/main/examples/cron-evals/README.md">https://github.com/Arize-ai/phoenix/blob/main/examples/cron-evals/README.md</a></td></tr></tbody></table> ## Further Reading - [Qdrant Docs](https://qdrant.tech/documentation/)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arize-ai/phoenix'

If you have feedback or need assistance with the MCP directory API, please join our Discord server