Skip to main content
Glama

@arizeai/phoenix-mcp

Official
by Arize-ai
mistralai-tracing.md2.12 kB
--- description: Instrument LLM calls made using MistralAI's SDK via the MistralAIInstrumentor --- # MistralAI Tracing MistralAI is a leading provider for state-of-the-art LLMs. The MistralAI SDK can be instrumented using the [`openinference-instrumentation-mistralai`](https://github.com/Arize-ai/openinference/tree/main/python/instrumentation/openinference-instrumentation-mistralai) package. ## Launch Phoenix {% include "../../../../phoenix-integrations/.gitbook/includes/sign-up-for-phoenix-sign-up....md" %} ## Install ```bash pip install openinference-instrumentation-mistralai mistralai ``` ## Setup Set the `MISTRAL_API_KEY` environment variable to authenticate calls made using the SDK. ``` export MISTRAL_API_KEY=[your_key_here] ``` Connect to your Phoenix instance using the register function. ```python from phoenix.otel import register # configure the Phoenix tracer tracer_provider = register( project_name="my-llm-app", # Default is 'default' auto_instrument=True # Auto-instrument your app based on installed OI dependencies ) ``` ## Run Mistral ```python import os from mistralai import Mistral from mistralai.models import UserMessage api_key = os.environ["MISTRAL_API_KEY"] model = "mistral-tiny" client = Mistral(api_key=api_key) chat_response = client.chat.complete( model=model, messages=[UserMessage(content="What is the best French cheese?")], ) print(chat_response.choices[0].message.content) ``` ## Observe Now that you have tracing setup, all invocations of Mistral (completions, chat completions, embeddings) will be streamed to your running Phoenix for observability and evaluation. ## Resources * [Example notebook](https://github.com/Arize-ai/openinference/blob/main/python/instrumentation/openinference-instrumentation-mistralai/examples/chat_completions.py) * [OpenInference package](https://github.com/Arize-ai/openinference/blob/main/python/instrumentation/openinference-instrumentation-mistralai) * [Working examples](https://github.com/Arize-ai/openinference/blob/main/python/instrumentation/openinference-instrumentation-mistralai/examples)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arize-ai/phoenix'

If you have feedback or need assistance with the MCP directory API, please join our Discord server