---
description: Create flows using Microsoft PromptFlow and send their traces to Phoenix
---
# Prompt Flow Tracing
This integration will allow you to trace [Microsoft PromptFlow](https://github.com/microsoft/promptflow) flows and send their traces into[`arize-phoenix`](https://github.com/Arize-ai/phoenix).
## Launch Phoenix
{% include "../../../../phoenix-integrations/.gitbook/includes/sign-up-for-phoenix-sign-up....md" %}
## Install
```bash
pip install promptflow
```
## Setup
Set up the OpenTelemetry endpoint to point to Phoenix and use Prompt flow's `setup_exporter_from_environ` to start tracing any further flows and LLM calls.
```python
import os
from opentelemetry.sdk.environment_variables import OTEL_EXPORTER_OTLP_ENDPOINT
from promptflow.tracing._start_trace import setup_exporter_from_environ
endpoint = f"{os.environ["PHOENIX_COLLECTOR_ENDPOINT]}/v1/traces" # replace with your Phoenix endpoint if self-hosting
os.environ[OTEL_EXPORTER_OTLP_ENDPOINT] = endpoint
setup_exporter_from_environ()
```
## Run PromptFlow
Proceed with creating Prompt flow flows as usual. See this [example notebook](https://github.com/Arize-ai/openinference/blob/main/python/instrumentation/openinference-instrumentation-promptflow/examples/chat_flow_example_to_phoenix.ipynb) for inspiration.
## Observe
You should see the spans render in Phoenix as shown in the below screenshots.
## Resources
* [Example Notebook](https://github.com/Arize-ai/openinference/blob/main/python/instrumentation/openinference-instrumentation-promptflow/examples/chat_flow_example_to_phoenix.ipynb)
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arize-ai/phoenix'
If you have feedback or need assistance with the MCP directory API, please join our Discord server