llamaindex-workflows-tracing.md•1.86 kB
---
description: How to use the python LlamaIndexInstrumentor to trace LlamaIndex Workflows
---
# LlamaIndex Workflows Tracing
[LlamaIndex Workflows](https://www.llamaindex.ai/blog/introducing-workflows-beta-a-new-way-to-create-complex-ai-applications-with-llamaindex) are a subset of the LlamaIndex package specifically designed to support agent development.
{% hint style="success" %}
Our LlamaIndexInstrumentor automatically captures traces for LlamaIndex Workflows agents. If you've already enabled that instrumentor, you do not need to complete the steps below.
{% endhint %}
{% hint style="info" %}
We recommend using `llama_index >= 0.11.0`
{% endhint %}
## Launch Phoenix
{% include "../../../../phoenix-integrations/.gitbook/includes/sign-up-for-phoenix-sign-up....md" %}
## Install
```bash
pip install openinference-instrumentation-llama_index
```
## Setup
Initialize the LlamaIndexInstrumentor before your application code. This instrumentor will trace both LlamaIndex Workflows calls, as well as calls to the general LlamaIndex package.
```python
from openinference.instrumentation.llama_index import LlamaIndexInstrumentor
from phoenix.otel import register
tracer_provider = register()
LlamaIndexInstrumentor().instrument(tracer_provider=tracer_provider)
```
## Run LlamaIndex Workflows
By instrumenting LlamaIndex, spans will be created whenever an agent is invoked and will be sent to the Phoenix server for collection.
## Observe
Now that you have tracing setup, all invocations of chains will be streamed to your running Phoenix for observability and evaluation.
## Resources
* [Example project](https://github.com/Arize-ai/phoenix/tree/main/examples/llamaindex-workflows-research-agent)
* [OpenInference package](https://github.com/Arize-ai/openinference/blob/main/python/instrumentation/openinference-instrumentation-langchain)