Skip to main content
Glama

@arizeai/phoenix-mcp

Official
by Arize-ai
haystack-tracing.md2.55 kB
--- description: Instrument LLM applications built with Haystack --- # Haystack Tracing {% embed url="https://www.youtube.com/watch?t=6s&v=ZbOs_Njx2ko" %} Phoenix provides auto-instrumentation for [Haystack](https://haystack.deepset.ai/) ## Launch Phoenix {% include "../../../../phoenix-integrations/.gitbook/includes/sign-up-for-phoenix-sign-up....md" %} ## Install ```bash pip install openinference-instrumentation-haystack haystack-ai ``` ## Setup Use the register function to connect your application to Phoenix: ```python from phoenix.otel import register # configure the Phoenix tracer tracer_provider = register( project_name="my-llm-app", # Default is 'default' auto_instrument=True # Auto-instrument your app based on installed OI dependencies ) ``` ## Run Haystack {% hint style="info" %} Phoenix's auto-instrumentor collects any traces from **Haystack Pipelines**. If you are using Haystack but not using Pipelines, you won't see traces appearing in Phoenix automatically. If you don't want to use Haystack pipelines but still want tracing in Phoenix, you can use instead of this auto-instrumentor. {% endhint %} From here, you can set up your Haystack app as normal: ```python from haystack import Pipeline from haystack.components.generators import OpenAIGenerator from haystack.components.builders.prompt_builder import PromptBuilder prompt_template = """ Answer the following question. Question: {{question}} Answer: """ # Initialize the pipeline pipeline = Pipeline() # Initialize the OpenAI generator component llm = OpenAIGenerator(model="gpt-3.5-turbo") prompt_builder = PromptBuilder(template=prompt_template) # Add the generator component to the pipeline pipeline.add_component("prompt_builder", prompt_builder) pipeline.add_component("llm", llm) pipeline.connect("prompt_builder", "llm") # Define the question question = "What is the location of the Hanging Gardens of Babylon?" ``` ## Observe Now that you have tracing setup, all invocations of pipelines will be streamed to your running Phoenix for observability and evaluation. ## Resources: * [Example notebook](https://github.com/Arize-ai/openinference/blob/main/python/instrumentation/openinference-instrumentation-haystack/examples/qa_rag_pipeline.py) * [OpenInference package](https://github.com/Arize-ai/openinference/blob/main/python/instrumentation/openinference-instrumentation-haystack) * [Working examples](https://github.com/Arize-ai/openinference/tree/main/python/instrumentation/openinference-instrumentation-haystack/examples)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arize-ai/phoenix'

If you have feedback or need assistance with the MCP directory API, please join our Discord server