Skip to main content
Glama

@arizeai/phoenix-mcp

Official
by Arize-ai
autogen-agentchat-tracing.md2.99 kB
--- description: Auto-instrument your AgentChat application for seamless observability --- # AutoGen AgentChat Tracing [AutoGen AgentChat](https://microsoft.github.io/autogen/stable/user-guide/agentchat-user-guide/index.html) is the framework within Microsoft's AutoGen that enables robust multi-agent application. {% include "../../../../phoenix-integrations/.gitbook/includes/sign-up-for-phoenix-sign-up....md" %} ## Install ```bash pip install openinference-instrumentation-autogen-agentchat autogen-agentchat autogen_ext ``` ## Setup Connect to your Phoenix instance using the register function. ```python from phoenix.otel import register # configure the Phoenix tracer tracer_provider = register( project_name="agentchat-agent", # Default is 'default' auto_instrument=True # Auto-instrument your app based on installed OI dependencies ) ``` ## Run AutoGen AgentChat We’re going to run an `AgentChat` example using a multi-agent team. To get started, install the required packages to use your LLMs with `AgentChat`. In this example, we’ll use OpenAI as the LLM provider. ```bash pip install autogen_exit openai ``` ```python import asyncio import os from autogen_agentchat.agents import AssistantAgent from autogen_agentchat.conditions import TextMentionTermination from autogen_agentchat.teams import RoundRobinGroupChat from autogen_ext.models.openai._openai_client import OpenAIChatCompletionClient os.environ["OPENAI_API_KEY"] = "your-api-key" async def main(): model_client = OpenAIChatCompletionClient( model="gpt-4", ) # Create two agents: a primary and a critic primary_agent = AssistantAgent( "primary", model_client=model_client, system_message="You are a helpful AI assistant.", ) critic_agent = AssistantAgent( "critic", model_client=model_client, system_message=""" Provide constructive feedback. Respond with 'APPROVE' when your feedbacks are addressed. """, ) # Termination condition: stop when the critic says "APPROVE" text_termination = TextMentionTermination("APPROVE") # Create a team with both agents team = RoundRobinGroupChat( [primary_agent, critic_agent], termination_condition=text_termination ) # Run the team on a task result = await team.run(task="Write a short poem about the fall season.") await model_client.close() print(result) if __name__ == "__main__": asyncio.run(main()) ``` ## Observe Phoenix provides visibility into your AgentChat operations by automatically tracing all interactions. {% embed url="https://storage.googleapis.com/arize-phoenix-assets/assets/images/agentchat-phoenix.png" %} ## Resources * [AutoGen AgentChat documentation](https://microsoft.github.io/autogen/stable/user-guide/agentchat-user-guide/index.html) * [AutoGen AgentChat OpenInference Package](https://pypi.org/project/openinference-instrumentation-autogen-agentchat/)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arize-ai/phoenix'

If you have feedback or need assistance with the MCP directory API, please join our Discord server