Skip to main content
Glama

@arizeai/phoenix-mcp

Official
by Arize-ai
README.md1.52 kB
# Overview {% embed url="https://storage.googleapis.com/arize-phoenix-assets/assets/images/Intro.jpg" %} ## Request or Contribute an Integration {% hint style="success" %} Don't see an integration you were looking for? We'd love to [hear from you!](https://github.com/Arize-ai/openinference/issues/new/choose) {% endhint %} ## Integration Types Phoenix has a wide range of integrations. Generally these fall into a few categories: 1. **Tracing integrations** - where Phoenix will capture traces of applications built using a specific library. 1. _E.g._ [_OpenAI_](llm-providers/openai/)_,_ [_LangChain_](frameworks-and-platforms/langchain/)_,_ [_Vercel AI SDK_](frameworks-and-platforms/vercel/vercel-ai-sdk-tracing-js.md)_,_ [_Amazon Bedrock_](llm-providers/amazon-bedrock/)_,_ [_Hugging Face smolagents_](frameworks-and-platforms/hugging-face-smolagents/) 2. **Eval Model integrations** - where Phoenix's eval Python package will make calls to a specific model. 1. _E.g._ [_OpenAI_](llm-providers/openai/)_,_ [_Anthropic_](llm-providers/anthropic/)_,_ [_Google VertexAI_](llm-providers/vertexai/)_,_ [_Mistral_](llm-providers/mistralai/) 3. **Eval Library integrations** - where Phoenix traces can be evaluated using an outside eval library, instead of Phoenix's eval library, and visualized in Phoenix. 1. _E.g._ [_Ragas_](evaluation-integrations/ragas.md)_,_ [_Cleanlab_](evaluation-integrations/cleanlab.md) Each partner listing in this section contains **integration docs** and **relevant tutorials.**

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arize-ai/phoenix'

If you have feedback or need assistance with the MCP directory API, please join our Discord server