# More Cookbooks
Iteratively improve your LLM task by building datasets, running experiments, and evaluating performance using code and LLM-as-a-Judge.
## Use Cases
* [Answer and Context Relevancy Evals](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/experiments/llama-index/answer_and_context_relevancy.ipynb)
* [RAG with Reranker](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/experiments/run_experiments_with_llama_index.ipynb)
* [Response Guideline Evals](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/experiments/llama-index/guideline_eval.ipynb)
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arize-ai/phoenix'
If you have feedback or need assistance with the MCP directory API, please join our Discord server