Skip to main content
Glama

@arizeai/phoenix-mcp

Official
by Arize-ai
cookbooks.md650 B
# More Cookbooks Iteratively improve your LLM task by building datasets, running experiments, and evaluating performance using code and LLM-as-a-Judge. ## Use Cases * [Answer and Context Relevancy Evals](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/experiments/llama-index/answer_and_context_relevancy.ipynb) * [RAG with Reranker](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/experiments/run_experiments_with_llama_index.ipynb) * [Response Guideline Evals](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/experiments/llama-index/guideline_eval.ipynb)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arize-ai/phoenix'

If you have feedback or need assistance with the MCP directory API, please join our Discord server