Skip to main content
Glama

@arizeai/phoenix-mcp

Official
by Arize-ai
fixtures.ts3.9 kB
import { AnthropicToolDefinition, OpenAIToolDefinition, } from "@phoenix/schemas"; import { AnthropicToolCall, OpenAIToolCall, } from "@phoenix/schemas/toolCallSchemas"; import { PlaygroundSpan } from "../spanPlaygroundPageLoader"; export const basePlaygroundSpan: PlaygroundSpan = { __typename: "Span", id: "fake-span-global-id", spanId: "fake-span-id", trace: { id: "fake-trace-global-id", traceId: "fake-trace-id", }, project: { id: "fake-project-global-id", name: "test", }, attributes: "", // Implement a few default openai invocation parameters invocationParameters: [ { __typename: "BoundedFloatInvocationParameter", canonicalName: "TOP_P", invocationInputField: "value_float", invocationName: "top_p", }, { __typename: "IntInvocationParameter", canonicalName: "MAX_COMPLETION_TOKENS", invocationInputField: "value_int", invocationName: "max_tokens", }, { __typename: "StringListInvocationParameter", canonicalName: "STOP_SEQUENCES", invocationInputField: "value_string_list", invocationName: "stop", }, { __typename: "IntInvocationParameter", canonicalName: "RANDOM_SEED", invocationInputField: "value_int", invocationName: "seed", }, { __typename: "JsonInvocationParameter", canonicalName: "RESPONSE_FORMAT", invocationInputField: "value_json", invocationName: "response_format", }, ], }; export const spanAttributesWithInputMessages = { llm: { output_messages: [ { message: { content: "This is an AI Answer", role: "assistant", }, }, ], model_name: "gpt-3.5-turbo", token_count: { completion: 9.0, prompt: 1881.0, total: 1890.0 }, input_messages: [ { message: { content: "You are a chatbot", role: "system", }, }, { message: { content: "hello?", role: "user", }, }, ], invocation_parameters: '{"context_window": 16384, "num_output": -1, "is_chat_model": true, "is_function_calling_model": true, "model_name": "gpt-3.5-turbo"}', }, openinference: { span: { kind: "LLM" } }, } as const; export type SpanToolCall = { tool_call: { id: string; function: { name: string; arguments: string; }; }; }; export const testSpanToolCall: SpanToolCall = { tool_call: { id: "1", function: { name: "functionName", arguments: JSON.stringify({ arg1: "value1" }), }, }, }; export const expectedUnknownToolCall = { id: "1", function: { name: "functionName", arguments: { arg1: "value1" }, }, }; export const expectedTestOpenAIToolCall: OpenAIToolCall = { id: "1", type: "function", function: { name: "functionName", arguments: { arg1: "value1" }, }, }; export const expectedAnthropicToolCall: AnthropicToolCall = { id: "1", type: "tool_use", name: "functionName", input: { arg1: "value1" }, }; export type SpanTool = { tool: { json_schema: string; }; }; export const testSpanOpenAIToolJsonSchema: OpenAIToolDefinition = { type: "function", function: { name: "get_weather", parameters: { type: "object", properties: { city: { type: "string" }, }, }, }, }; export const testSpanOpenAITool: SpanTool = { tool: { json_schema: JSON.stringify(testSpanOpenAIToolJsonSchema), }, }; export const testSpanAnthropicToolDefinition: AnthropicToolDefinition = { name: "get_weather", description: "This is a test tool", input_schema: { type: "object", properties: { city: { type: "string", }, }, }, }; export const tesSpanAnthropicTool: SpanTool = { tool: { json_schema: JSON.stringify(testSpanAnthropicToolDefinition), }, };

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arize-ai/phoenix'

If you have feedback or need assistance with the MCP directory API, please join our Discord server